STATISTICS
 A SHORT AND PAINLESS INTRODUCTION Nils M Holm

Contents

Preface 9
Probability 10
Basics 10
Conditional Probability 13
Permutations and Combinations 17
Probability Functions 20
Discrete Probability Distributions 22
Location 24
Variation 27
Discrete Distributions Revisited 31
Continuous Distributions 33
Quantiles 37
Central Limit Theorem 39
Statistics 43
Point Estimators 43
Sampling Distributions 44
Confidence Intervals 46
Regression and Correlation 50
Covariance 53
Standard Error of the Estimate 55
Final Notes 56
Probability Distributions 58
Uniform Distribution 58
Geometric Distribution 62
Binomial Distribution 66
Hypergeometric Distribution 70
Poisson Distribution 74
Normal Distribution 78
Standard Normal Distribution 82
Chi-Square Distribution 86
Student's t-Distribution 90
Further Applications 95
Hypothesis Testing 95
Contingency Tables 98
Special Functions 104
Gauss Error Function and Normal CDF 104
Gamma Function 104
Beta Function 108
t-Distribution CDF 109
Quantile Functions 110
Probability Tables 112
Mathematical Notation 116
Bibliography 119
Index 120

Preface

Statistics is a fascinating subject but, unfortunately, there is little literature that teaches it in a way that is a accessible to mathematical laymen while still being precise and straight to the point.
On the one side, there are math textbooks that provide the interested reader with rigorous proof of every little detail, which may not be necessary for all students of humanities or natural sciences. On the other side, there are lengthy works that use entertaining language and cute comic figures to try to get their point across.
This book has neither rigorous proofs nor cute characters. It strives to build a solid foundation for people who use statistics as a tool. After finishing this book, the reader should be able to digest more complete works in the field of statistics without too much difficulty.
Topics covered in this brief volume include basic probability, probability functions and distributions, confidence intervals, linear regression, correlation, and hypothesis testing.
The final chapters describe numerical methods for computing statistical functions. They are optional for most students, but may be of interest to the mathematically inclined reader.

There are no exercises, but at some points questions are asked and at those points the reader is invited to put aside the book and try to find their own solution before reading on.
The matter of the book progresses rather quickly, so the reader is advised not to skip sentences or paragraphs. Doing so would probably (!) complicate the comprehension of later parts of the text.

Enjoy the tour through the foundations of statistics!
Nils M Holm, July 2016

Probability

Basics

Probability is an estimate predicting how often an event will occur given a fixed number of trials. For example, when a coin is tossed 10 times, "heads" will probably show up about 5 times. So the probability of "heads" is 50% or
$p=0.5$
In statistics, probabilities are expressed as a real number $p \in \mathbf{R}$ where $0 \leq p \leq 1$, i.e. p is in the interval $[0,1]$. Impossibility (an event will never occur) is denoted by $p=0$ and certainty (an event will always occur) is represented by $p=1$.
Note that getting 7 "heads" and 3 "tails" when tossing a coin 10 times does not violate the prediction of getting "heads" half of the time! The probability of $p=0.5$ for getting "heads" is only the most probable outcome of tossing a coin repeatedly.
As the number of trials (coin tosses) increases, the actual distribution of heads and tails will converge towards the expectation of $p=0.5$ for "heads".

When tossing two coins at the same time, there are four possible outcomes (H indicates "heads" and T indicates "tails"):

HH HT TH TT

Each outcome has the same probability of $p=0.25$. This can be expressed using the probability function P as follows:
$P(H H)=0.25$
$P(H T)=0.25$
$P(T H)=0.25$
$P(T T)=0.25$
Meaning: the probability of two times "heads" is $p=0.25$, etc.

The set of all possible outcomes is called the sample space S. In the above example, this would be
$S=\{H H, H T, T H, T T\}$
The probability of S is $P(S)=1$, because one of the above events must occur in every trial (we are assuming an "ideal" coin that cannot get stuck on its edge or disappear in a storm drain).

So if $S=A_{1} \cup \cdots \cup A_{n}$, then $P\left(A_{1}\right)+\cdots+P\left(A_{n}\right)=P(S)=1$, where $A \cup B$ denotes the union, or logical "or", of two events, i.e. either A or B or both A and B happens.
The notation A^{\prime} (sometimes also \bar{A}) is called the complement of A. It indicates that an event A does not occur. The probability $P\left(A^{\prime}\right)$ is $1-P(A)$ for any A. For example, the probability of not getting two times heads when tossing two coins would be
$P(\overline{H H})=1-P(H H)=1-0.25=0.75$
and the probability of none of the events in the sample space happening would be $P\left(S^{\prime}\right)=1-1=0$.

When drawing cards from a standard deck of 32 cards, the probability of drawing an "ace" would be $P(A)=\frac{4}{32}=\frac{1}{8}$, because there are 4 aces in the standard deck. The probability of drawing a red card from the deck would be $P(B)=\frac{16}{32}=\frac{1}{2}$, because there are 16 red and 16 black cards in the deck. The sample space in this case would be the entire deck.

The probability of drawing a "red ace" would be
$P(A \cap B)=P(A) \cdot P(B)=\frac{1}{8} \cdot \frac{1}{2}=\frac{1}{16}=0.0625$
Meaning: the probability of A and B happening at the same time (i.e. in the same trial) is 0.0625 .

The probability of the intersection, or logical "and", $P(A \cap B)$ of two independent events A and B is calculated by multiplying their probabilities. More on this later (pg 14).

The probability of drawing an "ace" or a red card is:
$P(A \cup B)=P(A)+P(B)-P(A \cap B)=\frac{1}{8}+\frac{1}{2}-\frac{1}{16}=0.5625$

Meaning: the probability of either A or B or $A \cap B$ happening in the same trial is 0.5625 .

When calculating the probability of the union $P(A \cup B)$ of two events A and B, the probability of the intersection $P(A \cap B)$ has to be subtracted, because otherwise it would be duplicated (if it is non-zero).
Of course, if the intersection of A and B is empty, its probability does not have to be subtracted, so $P(A \cup B)=P(A)+P(B)$, iff A and B are mutually exclusive, i.e. iff the events A and B cannot occur in the same trial.
(Note: "iff" is a common abbreviation for the bidirectional "if", i.e. "if and only if".)
In the above example, $P(A)$ (aces) includes two red cards and $P(B)$ (red cards) includes two aces, giving an "overlap" of 4 cards. However, there are only 2 red aces in the deck, so half of the overlap has to be eliminated by subtracting $P(A \cap B)$.

This is probably best demonstrated using a Venn diagram (each ellipse denotes an event and the overlap of ellipses denotes the intersection of events):

Both the event A and B would contribute to the intersection $A B$, thereby duplicating it, so one of the sets (ellipses) has to lose its intersection part before adding it:

Summary

$0 \leq p \leq 1$ for any probability p.
$0 \leq P(A) \leq 1$ for any event A.
$P\left(A^{\prime}\right)=1-P(A)$ for any event A.
$P(S)=1$ for any sample space S.
If $S=\bigcup_{i=1}^{n} A_{i}$, then $P(S)=\sum_{i=1}^{n} P\left(A_{i}\right)=1$.
$P(A \cap B)=P(A) \cdot P(B)$, iff A and B are independent.
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$.
$P(A \cup B)=P(A)+P(B)$, iff A and B are mutually exclusive.

Conditional Probability

Imagine it is flu season and

- the probability of a random person having a cold is $p=0.1$
- the probability of a person coughing while having a cold is $p=0.95$ (5% may not cough and still be sick)
- the probability of a person not coughing while not having a cold is $p=0.9$ (10% might cough for different reasons)

The following tree diagram can be constructed from this scenario:

The notation $P(B \mid A)$ denotes the conditional probability of " B given A ", i.e. the probability of B in the case where it is already known that A has happened. Using this notation, the diagram can be populated with probabilities:

For example, $P(A)$ denotes the probability of a person being sick, $P(B \mid A)$ denotes the probability of a person coughing given they are sick, and $P(A B)=P(A \cap B)=P(A) \cdot P(B \mid A)$ is the probability of a person coughing and being sick ($0.1 \cdot 0.95=0.095$).
Note that the probability $P(A \cap B)$ is given as $P(A) \cdot P(B \mid A)$ here, while it was given as $P(A) \cdot P(B)$ earlier in this text (pg 11). In the example given here, A and B are dependent, because $P(B) \neq P(B \mid A)$.

In fact, two events A and B are independent if, and only if, $P(B)=P(B \mid A)$. That is, $P(B)$ is the same, no matter whether A has is given or not.
The probability $P(B)$ of a person coughing, although not explicitly stated in the data, can be inferred from the diagram. It is the combined probability of a person coughing, no matter if they have a cold or not:

$$
\begin{aligned}
P(B) & =P(B \cap A)+P\left(B \cap A^{\prime}\right) \\
& =P(A) \cdot P(B \mid A)+P\left(A^{\prime}\right) \cdot P\left(B \mid A^{\prime}\right) \\
& =0.1 \cdot 0.95+0.9 \cdot 0.1 \\
& =0.185
\end{aligned}
$$

Note that $P(B \cap A)$ and $P\left(B \cap A^{\prime}\right)$ are mutually exclusive, because A and A^{\prime} cannot happen in the same trial. (E.g. a person cannot be sick and not sick at the same time.)

Reverse Conditional Probability

A more interesting question in the flu season might be: "Given that someone is coughing, what is the probability that they have a cold?" I.e.: what is $P(A \mid B)$?

The probability of a person coughing because they have a cold equals the proportion of people who cough while having a cold and those who cough at all (for whatever reason):
$P(A \mid B)=\frac{\text { coughing and sick }}{\text { coughing }}=\frac{P(A \cap B)}{P(B)}$
Inserting the formulae for $P(A \cap B)$ and $P(B)$ from above gives:

$$
\frac{P(A) \cdot P(B \mid A)}{P(A) \cdot P(B \mid A)+P\left(A^{\prime}\right) \cdot P\left(B \mid A^{\prime}\right)}
$$

All probabilities that appear in this formula can be extracted from the tree diagram. The above formula is widely known as Bayes' Theorem or Bayes' Rule.

Substituting values for probability functions finally gives:

$$
\frac{P(A) \cdot P(B \mid A)}{P(A) \cdot P(B \mid A)+P\left(A^{\prime}\right) \cdot P\left(B \mid A^{\prime}\right)}=\frac{0.1 \cdot 0.95}{0.1 \cdot 0.95+0.9 \cdot 0.1}=\frac{19}{37}
$$

The probability of someone coughing because they have a cold in said flu season is just $p=0.514$ - so results from the above test would only be slightly more significant than tossing a coin.

The basic idea behind reverse conditional probability is as follows:

We may observe an effect, and that effect may or may not have a specific cause. Given the probability of "effect given cause" $(P(B \mid A))$ and the probability of "no effect given no cause" $\left(P\left(B^{\prime} \mid A^{\prime}\right)\right)$ as well as the probability of the cause in general $(P(A))$, what is the probability of "cause given effect"? I.e. what is the probability that the observation of the effect was triggered by the specific cause? This question is answered by Bayes' Theorem.

When using reverse conditional probability (RCP) to evaluate test results, $P(B \mid A)$ is called the sensitivity of the test and $P\left(B^{\prime} \mid A^{\prime}\right)$ is called its specificity. A test is sensitive, if it catches a lot of positives (i.e. has few false negatives). It is specific, if it catches few negatives (i.e. has few false positives).

A false positive occurs when a test wrongly delivers a positive result. Analogously, a false negative is a wrong negative result.

The above "cold test" has a sensitivity of $p=0.95$ and a specificity of $p=0.9$. This sounds good, but the reliability of the test is low, because a positive only indicates a $p=0.514$ chance for the specific cause.

RCP depends a lot on the prior probability (or just "prior"), i.e. the probability of the cause in general, $P(A)$. When $P(A)=1$, then
$\frac{P(A) \cdot P(B \mid A)}{P(A) \cdot P(B \mid A)+P\left(A^{\prime}\right) \cdot P\left(B \mid A^{\prime}\right)}=\frac{1 \cdot P(B \mid A)}{1 \cdot P(B \mid A)+0 \cdot P\left(B \mid A^{\prime}\right)}=\frac{P(B \mid A)}{P(B \mid A)}$
So the test result is always $p=1$. Similarly, when the prior is $P(A)=0$, the test will always be negative.

Above cold test would not be as bad, if the prevalence (the medical term for the prior) was higher, i.e. if more people had a cold in the first place. Given $P(A)=0.5$:
$\frac{P(A) \cdot P(B \mid A)}{P(A) \cdot P(B \mid A)+P\left(A^{\prime}\right) \cdot P\left(B \mid A^{\prime}\right)}=\frac{0.5 \cdot 0.95}{0.5 \cdot 0.95+0.5 \cdot 0.1}=\frac{19}{21}$
So given a prevalence of 50%, a coughing person would indicate a cold in about 90% of the observed cases.

The smaller the prior is, the greater the sensitivity and the specificity of a test have to be in order for the test result to be significant.

Summary

$P(A \cap B)=P(A) \cdot P(B \mid A)$ if A and B are dependent.
$P(B)=P(B \mid A)$ iff A and B are independent.
$P(B)=P(A) \cdot P(B \mid A)+P\left(A^{\prime}\right) \cdot P\left(B \mid A^{\prime}\right)$

Probability Distributions

Uniform Distribution

$X \sim U(a, b)$	
PMF	$\begin{cases}0 & \text { if } x<a \\ \frac{1}{b-a+1} & \text { if } a \leq x \leq b \\ 0 & \text { if } x>b\end{cases}$
CDF	$\begin{cases}0 & \text { if } x<a \\ \frac{x-a+1}{b-a+1} & \text { if } a \leq x \leq b \\ 1 & \text { if } x>b\end{cases}$
Parameters	$\frac{a, b \in \mathbf{Z}, a \leq b: \text { range }}{}$
σ^{2}	$\frac{a+b}{2}$
Skewness $\left(\gamma_{1}\right)$	0

Question answered

PMF: what is the probability of an event x happening, given a constant probability?
CDF: what is the probability of any event in the range from a to x happening?

Examples

The probability of getting a specific face when rolling a six-sided die follows the uniform distribution $X \sim U(1,6)$, so the probability of getting a " 3 " is
$P(X=3)=\frac{1}{b-a+1}=\frac{1}{6-1+1}=\frac{1}{6}$
The probability of getting a " 1 ", " 2 ", or " 3 " is:
$P(X \leq 3)=\frac{x-a+1}{b-a+1}=\frac{3-1+1}{6-1+1}=\frac{1}{2}$
The probability of getting at least a " 3 " is:
$P(X \geq 3)=1-P(X \leq 2)=1-\frac{x-a+1}{b-a+1}=1-\frac{2-1+1}{6-1+1}=\frac{2}{3}$

Geometric Distribution

$X \sim \operatorname{Geo}(p)$	
PMF	$q^{x-1} \cdot p$
CDF	$1-q^{x}$
Parameters	$p \in[0,1]:$ probability of success
	$q: 1-p$
	$x \in \mathbf{N}_{0}:$ number of trials
μ	$\frac{1}{p}$
σ^{2}	$\frac{q}{p^{2}}$
Skewness $\left(\gamma_{1}\right)$	$\frac{2-p}{\sqrt{q}}$

Questions answered

PMF: given x independent trials, all with equal probability of success p, what is the probability of exactly one success after $x-1$ failures?

CDF: given x independent trials, what is the probability of at least one success?

Examples

The probability of getting the first "six" in the $n^{\text {th }}$ subsequent roll of a six-sided die follows the geometric distribution $X \sim \operatorname{Geo}\left(\frac{1}{6}\right)$. The probability of getting a six $\left(p=\frac{1}{6}\right)$ in the $x=3^{r d}$ toss of a die is:

$$
\begin{aligned}
P(X=3) & =q^{x-1} \cdot p=\left(1-\frac{1}{6}\right)^{2} \cdot \frac{1}{6}=\left(\frac{5}{6}\right)^{2} \cdot \frac{1}{6} \\
& =\frac{25}{36} \cdot \frac{1}{6}=\frac{25}{216} \approx 0.116
\end{aligned}
$$

The probability of getting at least one six in three tosses is:

$$
\begin{aligned}
P(X \leq 3) & =1-q^{x}=1-\left(1-\frac{1}{6}\right)^{3}=1-\left(\frac{5}{6}\right)^{3} \\
& =1-\frac{125}{216}=\frac{91}{216} \approx 0.421
\end{aligned}
$$

Binomial Distribution

$X \sim B(n, p)$	
PMF	$\binom{n}{x} \cdot p^{x} \cdot q^{n-x}$
	$\sum_{i=0}^{x}\binom{n}{i} \cdot p^{i} \cdot q^{n-i}$
	$I_{q}(n-x, 1+x)$
	$n \in \mathbf{N}_{0}:$ number of trials
	$p \in[0,1]:$ probability of success
	$q: 1-p$ (probability of failure)
μ	$x \in \mathbf{N}_{0}, x \leq n:$ number of successes
σ^{2}	$n p$
Skewness $\left(\gamma_{1}\right)$	$\frac{q-p}{\sqrt{n p q}}$
Approximations	$N(n p, n p q)$ for $n p>5, n q>5$
	Poi $(n p)$ for $n \geq 50, p<0.1$

Questions answered

PMF: what is the probability of exactly x successes in n independent trials with a success probability of p ?

CDF: what is the probability of up to x successes in n independent trials?

Examples

The probability for x out of 5 children being girls (or boys) follows the binomial distribution $X \sim B(5,0.5)$ given equal chances for a child being a girl or boy ($p=0.5$).

Given this distribution, the probability for a couple having exactly $x=3$ girls is:

$$
\begin{aligned}
P(X=3) & =\binom{n}{x} \cdot p^{x} \cdot q^{n-x}=\binom{5}{3} \cdot 0.5^{3} \cdot(1-0.5)^{5-3} \\
& =\binom{5}{3} \cdot 0.5^{3} \cdot 0.5^{2}=10 \cdot 0.125 \cdot 0.25=0.3125
\end{aligned}
$$

All other factors being equal, the probability of up to three of the children being girls is:

$$
\begin{aligned}
P(X \leq 3) & =\sum_{i=0}^{x}\binom{n}{i} \cdot p^{i} \cdot q^{n-i}=\sum_{i=0}^{3}\binom{5}{i} \cdot 0.5^{i} \cdot 0.5^{n-i} \\
& =\binom{5}{0} \cdot 0.5^{0} \cdot 0.5^{5}+\binom{5}{1} \cdot 0.5^{1} \cdot 0.5^{4}+\binom{5}{2} \cdot 0.5^{2} \cdot 0.5^{3}+\binom{5}{3} \cdot 0.5^{3} \cdot 0.5^{2}
\end{aligned}
$$

$$
=0.03125+0.15625+0.3125+0.3125=0.8125
$$

A more effective way to compute the above would be:

$$
P(X \leq 3)=I_{q}(n-x, 1+x)=I_{0.5}(2,4)=0.8125
$$

where $I_{q}(a, b)$ denotes the regularized incomplete B (beta) function (see page 108).

Index

3-sigma, rule of 29
5-sigma certainty 49
alpha level 97
alternative hypothesis 95
anticorrelation 50
Bayes' Theorem 15
bell curve 34
Bernoulli trial 32
best guess 43
beta function 118
incomplete 108
regularized incomplete 68
binomial coefficient 32
binomial distribution 32, 66
cause 15
CDF 21, 34
central limit theorem 39, 45
central tendency 25
certainty 10
5-sigma 49
chi-square distribution 86,106
chi-square statistic 86, 100
chi-square test 86,100
choice 19
CLT 39, 45
combination 18, 31
complement 11
confidence interval 46, 91, 110
confidence level 46, 91, 110
contingency table 99
continuity correction 80
correlation coefficient 53
correlation 50, 53
covariance 53
critical region 46, 88, 96
cumulative distribution function 21, 34
degrees of freedom 86, 102
distribution
binomial 32, 66
chi-square 86,106
geometric 62
hypergeometric 70
normal 78
Poisson 74, 106
standard normal 82
uniform 58
distribution function 21, 34
effect 15
error function 79, 83
computation 104
Euler's constant 34
event 10
expectation 24,86
contingency table 100
explained variable 50
explanatory variable 50
factorial 17
failure 32
false negative 15
false position method 111
false positive 15
frequency table 98
function
beta 118
distribution 21, 34
error 79, 83
gamma 104
phi 35, 104
root of 110
function
quantile 37, 38, 110
stochastic 20
gamma function 104
incomplete 106
regularized incomplete 75,88
Gauss error function 79, 83
computation 104
geometric distribution 62
goodness of fit 86
head 44
hypergeometric distribution 70
hypothesis testing 95
iid 39
impossibility 10
income inequality 29
incomplete beta function 108
incomplete gamma function 106
independence 14, 100
inference 43
intercept 51
interquartile range 28
intersection 11
probability 14
interval, two-tailed 47
inverse CDF 37, 38, 110
k-combination 18
k-permutation 18
level of confidence 46, 91, 110
level of significance 95
linear regression 51
location 25
logical AND 11
logical OR 11
mean of sample 43
mean 24
median 26, 26, 37
mode 26
multivariate data 99
mutual exclusion 12
negative correlation 50
Newton's method 110
non-linear regression 56
normal distribution CDF 104
normal distribution 34, 78
null hypothesis 95
observation 86, 102
outcome 10
outlier 26
P -value 0
PDF 33
Pearson's r 53
percentile 37
permutation 17
phi function 35, 104
pi 34
PMF 21
point estimate 43
point estimator 43
Poisson distribution 74, 106
polynomial regression 56
population 43
positive correlation 50
prevalence 16
prior 16
probability 10
complementary 31
conditional 13
prior 16
probability density function 33
probability distribution
continuous 33
discrete 22
probability mass function 20, 21
proportion 14
q-quantile 37
QF 37, 38, 110
quantile function $37,38,110$
quantile 37
quartile 28, 37
random distribution 50
random variable 20, 39
random variable, discrete 21
range 27
RCP 15
regressand 50
regression line 51
regression 50
regression, linear 51
regressor 50
regula falsi method 111
regularized incomplete beta function 68
regularized incomplete
gamma function 75,88
replacement 70
residual sum of squares 55
reverse conditional probability 15
root of a function 110
RSS 55
rule of the three sigma 29
sample mean 43
sample point 45
sample space 20
sample 39, 43
variance 10
sampling distribution 44
of means 45,90
scatter diagram 50
score 34
sensitivity 15
significance 88
significance level 95
skewness 26,44
slope 51
specificity 15
SSE 55
standard deviation 28
standard error 48
standard error of estimate 55
standard normal CDF 35
standard normal distribution
$34,40,46,82$
standard score 34,39
statistic 34,43
statistic inference 43
stochastic function 20
Student's t-distribution 90, 108
success 32
sum of squared errors 55
t-distribution 90, 108, 109
t-score 91
tail 44
three sigma 29
trial 10
Bernoulli 32
type-I error 97
uniform distribution 23, 58
union 11
probability 12
variables
explained 50
explanatory 50
iid 39
variance 28,53
sample 43
variation 27
Z-distribution 34, 82
z-score 34, 39, 82
adjusted 47
z-statistic 34

