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Preface
Statistics is a fascinating subject but, unfor tunately, there is little

literature that teaches it in a way that is a accessible to

mathematical laymen while still being precise and straight to the

point.

On the one side, there are math textbooks that provide the

interested reader with rigorous proof of every little detail, which

may not be necessary for all students of humanities or natural

sciences. On the other side, there are lengthy wor ks that use

enter taining language and cute comic figures to try to get their

point across.

This book has neither rigorous proofs nor cute characters. It

str ives to build a solid foundation for people who use statistics as a

tool. After finishing this book, the reader should be able to digest

more complete wor ks in the field of statistics without too much

difficulty.

Topics covered in this brief volume include basic probability,

probability functions and distributions, confidence intervals, linear

regression, correlation, and hypothesis testing.

The final chapters describe numer ical methods for computing

statistical functions. They are optional for most students, but may

be of interest to the mathematically inclined reader.

There are no exercises, but at some points questions are asked

and at those points the reader is invited to put aside the book and

tr y to find their own solution before reading on.

The matter of the book progresses rather quickly, so the reader is

advised not to skip sentences or paragraphs. Doing so would

probably (!) complicate the comprehension of later parts of the

text.

Enjoy the tour through the foundations of statistics!

Nils M Holm, July 2016



10

Probability

Basics
Probability is an estimate predicting how often an ev ent will occur

given a fixed number of tr ials. For example, when a coin is tossed

10 times, ‘‘heads’’ will probably show up about 5 times. So the

probability of ‘‘heads’’ is 50% or

p = 0. 5

In statistics, probabilities are expressed as a real number p∈R

where 0 ≤ p ≤ 1, i.e. p is in the interval [0, 1]. Impossibility (an

ev ent will never occur) is denoted by p = 0 and cer tainty (an event

will always occur) is represented by p = 1.

Note that getting 7 ‘‘heads’’ and 3 ‘‘tails’’ when tossing a coin 10

times does not violate the prediction of getting ‘‘heads’’ half of the

time! The probability of p = 0. 5 for getting ‘‘heads’’ is only the

most probable outcome of tossing a coin repeatedly.

As the number of trials (coin tosses) increases, the actual

distr ibution of heads and tails will converge towards the

expectation of p = 0. 5 for ‘‘heads’’.

When tossing two coins at the same time, there are four possible

outcomes (H indicates ‘‘heads’’ and T indicates ‘‘tails’’):

HH HT TH TT

Each outcome has the same probability of p = 0. 25. This can be

expressed using the probability function P as follows:

P(HH) = 0. 25

P(HT ) = 0. 25

P(TH) = 0. 25

P(TT ) = 0. 25

Meaning: the probability of two times ‘‘heads’’ is p = 0. 25, etc.
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The set of all possible outcomes is called the sample space S. In

the above example, this would be

S = {HH , HT , TH , TT }

The probability of S is P(S) = 1, because one of the above events

must occur in every trial (we are assuming an ‘‘ideal’’ coin that

cannot get stuck on its edge or disappear in a storm drain).

So if S = A1 ∪ . . . ∪ An, then P(A1) + . . . + P(An) = P(S) = 1,

where A ∪ B denotes the union, or logical ‘‘or’’, of two events, i.e.

either A or B or both A and B happens.

The notation A′ (sometimes also A) is called the complement of

A. It indicates that an event A does not occur. The probability

P(A′) is 1 − P(A) for any A. For example, the probability of not

getting two times heads when tossing two coins would be

P(HH) = 1 − P(HH) = 1 − 0. 25 = 0. 75

and the probability of none of the events in the sample space

happening would be P(S′) = 1 − 1 = 0.

When drawing cards from a standard deck of 32 cards, the

probability of drawing an ‘‘ace’’ would be P(A) = 4

32
= 1

8
, because

there are 4 aces in the standard deck. The probability of drawing a

red card from the deck would be P(B) = 16

32
= 1

2
, because there are

16 red and 16 black cards in the deck. The sample space in this

case would be the entire deck.

The probability of drawing a ‘‘red ace’’ would be

P(A ∩ B) = P(A) ⋅ P(B) = 1

8
⋅ 1

2
= 1

16
= 0. 0625

Meaning: the probability of A and B happening at the same time

(i.e. in the same trial) is 0. 0625.

The probability of the intersection, or logical ‘‘and’’, P(A ∩ B) of

two independent ev ents A and B is calculated by multiplying their

probabilities. More on this later (pg 14).

The probability of drawing an ‘‘ace’’ or a red card is:

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) = 1

8
+ 1

2
− 1

16
= 0. 5625
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Meaning: the probability of either A or B or A ∩ B happening in

the same trial is 0. 5625.

When calculating the probability of the union P(A ∪ B) of two

ev ents A and B, the probability of the intersection P(A ∩ B) has to

be subtracted, because otherwise it would be duplicated (if it is

non-zero).

Of course, if the intersection of A and B is empty, its probability

does not have to be subtracted, so P(A ∪ B) = P(A) + P(B), iff

A and B are mutually exclusive, i.e. iff the events A and B cannot

occur in the same trial.

(Note: ‘‘iff ’’ is a common abbreviation for the bidirectional ‘‘if ’’, i.e. ‘‘if and only if’’.)

In the above example, P(A) (aces) includes two red cards and

P(B) (red cards) includes two aces, giving an ‘‘overlap’’ of 4 cards.

However, there are only 2 red aces in the deck, so half of the

over lap has to be eliminated by subtracting P(A ∩ B).

This is probably best demonstrated using a Venn diagram (each

ellipse denotes an event and the overlap of ellipses denotes the

intersection of events):

A BAB

S

Both the event A and B would contribute to the intersection AB,

thereby duplicating it, so one of the sets (ellipses) has to lose its

intersection part before adding it:

A B

S

B-ABA

S
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Summar y

0 ≤ p ≤ 1 for any probability p.

0 ≤ P(A) ≤ 1 for any event A.

P(A′) = 1 − P(A) for any event A.

P(S) = 1 for any sample space S.

If S =
n

i=1
∪ Ai, then P(S) =

n

i=1
Σ P(Ai) = 1.

P(A ∩ B) = P(A) ⋅ P(B), iff A and B are independent.

P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

P(A ∪ B) = P(A) + P(B), iff A and B are mutually exclusive.

Conditional Probability
Imagine it is flu season and

• the probability of a random person having a cold is p = 0. 1

• the probability of a person coughing while having a cold is

p = 0. 95 (5% may not cough and still be sick)

• the probability of a person not coughing while not having a cold

is p = 0. 9 (10% might cough for different reasons)

The following tree diagram can be constructed from this scenario:

sick

not sick

coughing when sick

not coughing when sick

coughing when not sick

not coughing when not sick

The notation P(B|A) denotes the conditional probability of ‘‘B

given A’’, i.e. the probability of B in the case where it is already

known that A has happened. Using this notation, the diagram can

be populated with probabilities:
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P(A) = 0.1

P(A’) = 0.9

P(B|A) = 0.95

P(B’|A) = 0.05

P(B|A’) = 0.1

P(B’|A’) = 0.9

P(AB) = P(A)P(B|A)

P(AB’) = P(A)P(B’|A)

P(A’B) = P(A’)P(B|A’)

P(A’B’) = P(A’)P(B’|A’)

For example, P(A) denotes the probability of a person being sick,

P(B|A) denotes the probability of a person coughing given they

are sick, and P(AB) = P(A ∩ B) = P(A) ⋅ P(B|A) is the probability

of a person coughing and being sick (0. 1 ⋅ 0. 95 = 0. 095).

Note that the probability P(A ∩ B) is given as P(A) ⋅ P(B|A) here,

while it was given as P(A) ⋅ P(B) ear lier in this text (pg 11). In the

example given here, A and B are dependent, because

P(B) ≠ P(B|A).

In fact, two events A and B are independent if, and only if,

P(B) = P(B|A). That is, P(B) is the same, no matter whether A

has is given or not.

The probability P(B) of a person coughing, although not explicitly

stated in the data, can be inferred from the diagram. It is the

combined probability of a person coughing, no matter if they have

a cold or not:

P(B) = P(B ∩ A) + P(B ∩ A′)
= P(A) ⋅ P(B|A) + P(A′) ⋅ P(B|A′)
= 0. 1 ⋅ 0. 95 + 0. 9 ⋅ 0. 1

= 0. 185

Note that P(B ∩ A) and P(B ∩ A′) are mutually exclusive,

because A and A′ cannot happen in the same trial. (E.g. a person

cannot be sick and not sick at the same time.)

Reverse Conditional Probability

A more interesting question in the flu season might be: ‘‘Given that

someone is coughing, what is the probability that they have a

cold?’’ I.e.: what is P(A|B)?
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The probability of a person coughing because they have a cold

equals the propor tion of people who cough while having a cold

and those who cough at all (for whatever reason):

P(A|B) =
coughing and sick

coughing
=

P(A ∩ B)

P(B)

Inser ting the for mulae for P(A ∩ B) and P(B) from above gives:

P(A) ⋅ P(B|A)

P(A) ⋅ P(B|A) + P(A′) ⋅ P(B|A′)
All probabilities that appear in this for mula can be extracted from

the tree diagram. The above for mula is widely known as Bayes’

Theorem or Bayes’ Rule.

Substituting values for probability functions finally gives:

P(A) ⋅ P(B|A)

P(A) ⋅ P(B|A) + P(A′) ⋅ P(B|A′)
=

0. 1 ⋅ 0. 95

0. 1 ⋅ 0. 95 + 0. 9 ⋅ 0. 1
=

19

37

The probability of someone coughing because they have a cold in

said flu season is just p = 0. 514 — so results from the above test

would only be slightly more significant than tossing a coin.

The basic idea behind reverse conditional probability is as follows:

Cause?

Effect?

Effect?

Cause and Effect

Cause, but no Effect

No Cause, but Effect

No Cause, no Effect

We may obser ve an effect, and that effect may or may not have a

specific cause. Given the probability of ‘‘effect given cause’’

(P(B|A)) and the probability of ‘‘no effect given no cause’’

(P(B′|A′)) as well as the probability of the cause in general

(P(A)), what is the probability of ‘‘cause given effect’’? I.e. what is

the probability that the observation of the effect was triggered by

the specific cause? This question is answered by Bay es’

Theorem.
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When using reverse conditional probability (RCP) to evaluate test

results, P(B|A) is called the sensitivity of the test and P(B′|A′) is

called its specificity. A test is sensitive, if it catches a lot of

positives (i.e. has few false negatives). It is specific, if it catches

fe w negatives (i.e. has few false positives).

A false positive occurs when a test wrongly delivers a positive

result. Analogously, a false negative is a wrong negative result.

The above ‘‘cold test’’ has a sensitivity of p = 0. 95 and a

specificity of p = 0. 9. This sounds good, but the reliability of the

test is low, because a positive only indicates a p = 0. 514 chance

for the specific cause.

RCP depends a lot on the pr ior probability (or just ‘‘pr ior’’), i.e. the

probability of the cause in general, P(A). When P(A) = 1, then

P(A) ⋅ P(B|A)

P(A) ⋅ P(B|A) + P(A′) ⋅ P(B|A′)
=

1 ⋅ P(B|A)

1 ⋅ P(B|A) + 0 ⋅ P(B|A′)
=

P(B|A)

P(B|A)

So the test result is always p = 1. Similar ly, when the prior is

P(A) = 0, the test will always be negative.

Above cold test would not be as bad, if the prevalence (the

medical term for the prior) was higher, i.e. if more people had a

cold in the first place. Given P(A) = 0. 5:

P(A) ⋅ P(B|A)

P(A) ⋅ P(B|A) + P(A′) ⋅ P(B|A′)
=

0. 5 ⋅ 0. 95

0. 5 ⋅ 0. 95 + 0. 5 ⋅ 0. 1
=

19

21

So given a prevalence of 50%, a coughing person would indicate a

cold in about 90% of the observed cases.

The smaller the prior is, the greater the sensitivity and the

specificity of a test have to be in order for the test result to be

significant.

Summar y

P(A ∩ B) = P(A) ⋅ P(B|A) if A and B are dependent.

P(B) = P(B|A) iff A and B are independent.

P(B) = P(A) ⋅ P(B|A) + P(A′) ⋅ P(B|A′)
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Probability Distributions

Unifor m Distr ibution

X˜ U(a, b)

PMF









0

1

b − a + 1

0

if x < a

if a ≤ x ≤ b

if x > b

CDF









0

x − a + 1

b − a + 1

1

if x < a

if a ≤ x ≤ b

if x > b

Parameters a, b∈Z, a ≤ b: range

µ
a + b

2

σ 2 (b − a + 1)2 − 1

12
Skewness (γ1) 0

Question answered

PMF: what is the probability of an event x happening, given a

constant probability?

CDF: what is the probability of any event in the range from a to x

happening?
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0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Uniform Distribution PMF, X ~ U(a,b)
a = 3, b = 5
a = 2, b = 7
a = 1, b = 9

Examples

The probability of getting a specific face when rolling a six-sided

die follows the unifor m distr ibution X˜ U(1, 6), so the probability of

getting a ‘‘3’’ is

P(X = 3) = 1

b − a + 1
= 1

6 − 1 + 1
= 1

6

The probability of getting a ‘‘1’’, ‘‘2’’, or ‘‘3’’ is:

P(X ≤ 3) = x − a + 1

b − a + 1
= 3 − 1 + 1

6 − 1 + 1
= 1

2

The probability of getting at least a ‘‘3’’ is:

P(X ≥ 3) = 1 − P(X ≤ 2) = 1 − x − a + 1

b − a + 1
= 1 − 2 − 1 + 1

6 − 1 + 1
= 2

3
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0 1 2 3 4 5 6 7 8 9 10
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Uniform Distribution CDF, X ~ U(a,b)
a = 3, b = 5
a = 1, b = 9
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Geometr ic Distr ibution

X˜ Geo( p)

PMF qx−1 ⋅ p

CDF 1 − qx

p∈[0, 1]: probability of success

q: 1 − p

x ∈N0: number of trials

Parameters

µ
1

p

σ 2 q

p2

Skewness (γ1)
2 − p

√ q

Questions answered

PMF: given x independent trials, all with equal probability of

success p, what is the probability of exactly one success after

x − 1 failures?

CDF: given x independent trials, what is the probability of at least

one success?

Examples

The probability of getting the first ‘‘six’’ in the nth subsequent roll of

a six-sided die follows the geometric distribution X˜ Geo(
1

6
). The

probability of getting a six (p = 1

6
) in the x = 3rd toss of a die is:

P(X = 3) = qx−1 ⋅ p = 

1 − 1

6




2

⋅ 1

6
= 


5

6




2

⋅ 1

6

= 25

36
⋅ 1

6
= 25

216
≈ 0. 116
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1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Geometric Distribution PMF, X ~ Geo(p)
p = 0.5
p = 0.2

The probability of getting at least one six in three tosses is:

P(X ≤ 3) = 1 − qx = 1 − 

1 − 1

6




3

= 1 − 


5

6




3

= 1 − 125

216
= 91

216
≈ 0. 421
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1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Geometric Distribution CDF, X ~ Geo(p)
p = 0.5
p = 0.2
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Binomial Distribution

X˜ B(n, p)

PMF


n

x




⋅ px ⋅ qn−x

x

i=0
Σ 


n

i




⋅ pi ⋅ qn−i

Iq(n − x, 1 + x)

CDF

n∈N0: number of trials

p∈[0, 1]: probability of success

q: 1 − p (probability of failure)

x ∈N0, x ≤ n: number of successes

Parameters

µ np

σ 2 npq

Skewness (γ1)
q − p

√ npq

N (np, npq) for np > 5, nq > 5

Poi(np) for n ≥ 50, p < 0. 1
Approximations

Questions answered

PMF: what is the probability of exactly x successes in n

independent trials with a success probability of p?

CDF: what is the probability of up to x successes in n independent

tr ials?

Examples

The probability for x out of 5 children being girls (or boys) follows

the binomial distribution X˜ B(5, 0. 5) given equal chances for a

child being a girl or boy (p = 0. 5).
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0

0.1

0.2

0.3

0.4

Binomial Distribution PMF, X ~ B(n,p)
n = 30, p = 0.5
n = 10, p = 0.5
n = 30, p = 0.9

Given this distribution, the probability for a couple having exactly

x = 3 gir ls is:

P(X = 3) = 

n

x




⋅ px ⋅ qn−x = 

5

3




⋅ 0. 53 ⋅ (1 − 0. 5)5−3

= 

5

3




⋅ 0. 53 ⋅ 0. 52 = 10 ⋅ 0. 125 ⋅ 0. 25 = 0. 3125

All other factors being equal, the probability of up to three of the

children being girls is:

P(X ≤ 3) =
x

i=0
Σ 


n

i




⋅ pi ⋅ qn−i =
3

i=0
Σ 


5

i




⋅ 0. 5i ⋅ 0. 5n−i

= 

5

0




⋅ 0. 50 ⋅ 0. 55 + 

5

1




⋅ 0. 51 ⋅ 0. 54 + 

5

2




⋅ 0. 52 ⋅ 0. 53 + 

5

3




⋅ 0. 53 ⋅ 0. 52
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= 0. 03125 + 0. 15625 + 0. 3125 + 0. 3125 = 0. 8125

A more effective way to compute the above would be:

P(X ≤ 3) = Iq(n − x, 1 + x) = I0.5(2, 4) = 0. 8125

where Iq(a, b) denotes the regularized incomplete Β (beta)

function (see page 108).
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Binomial Distribution CDF, X ~ B(n,p)
n = 30, p = 0.5
n = 10, p = 0.5
n = 30, p = 0.9
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