
The mLite Language
Nils M Holm, 2014

mLite is a general-pur pose, functional, lightweight,

dynamic programming language. It borrows ideas

from both the Scheme [R4RS] and Standard ML

[DEFSML] languages, taking most of its syntax

from ML and its dynamic nature from Scheme. It

extends ML-style pattern matching by adding

guarded patterns and also introduces the principle

of implicit guards. The implementation presented

here is intended to be portable and easily realized

on top of existing Scheme systems.

Contents
Introduction 2 Declarations 26

Patter n Matching 3 Local Declarations 28

Syntax and Infor mal Semantics 4 Der ived For ms 29

Function Application 5 mLite Reference 31

Conditional Evaluation 6 mLite/LAM Data Objects 31

Guarded Patter ns 7 Predefined Infix Operators 32

Exception Handling 9 Patter n Matching Algorithm 32

Input and Output 10 Implicit Guard Patter ns 33

Declaration Syntax and Semantics 11 mLite Syntax Summary 35

Operator Declarations 14 Declarations 35

Algebraic Types 15 Expressions 37

The Lite Abstract Machine 18 mLite Function Summary 39

LAM Syntax 18 Ar ithmetics 39

Scheme-Like Syntax 19 Str uctural Operations 42

Non-Scheme Syntax 20 Type Predicates and Conversion 46

Scheme-Like Functions 21 Char Functions 47

Renamed Functions 22 Input/Output Functions 48

mLite Functions 22 Appendix 50

Compiling mLite to LAM 24 mLite Grammar 50

Data Objects 24 mLite and Scheme Functions 56

Functions and Application 24 Differences to ML 56

Expressions 25 References 58



2

Introduction
mLite is a functional language with immutable data types (with the

exception of vectors), which reduces surpr ises in the process of

program dev elopment to a minimum. Its syntax is lightweight and

math-or iented. Here is a simple example that creates a list of

numbers (iota), and then uses a generic extract function to extract

all multiples of 7 from such a list:

fun iota (0, a) = a
| (x, a) = iota (x − 1, x : : a)
| x = iota (x, [])

fun extract ( f , []) = []
| ( f , f x : : xs) = x : : extract ( f , xs)
| ( f , x : : xs) = extract ( f , xs);

extract( fn x = x mod 7 = 0, iota 123)

mLite makes extensive use of patter n matching. All functions are

unar y, and multiple arguments are passed to functions in tuples

and destructured by patter ns. Tuples are delimited by parentheses

and their elements are separated by commas. Lists use square

brackets instead of parentheses.

Lists and tuples are built dynamically in expressions (but not in

patter ns), so [1 + 2, 3 + 4] gives [3, 7] and (a, b) would be a tuple

containing the values of the var iables a and b.

: : is the ‘‘cons’’ operator that adds a new element to the front of a

list. When it appears in a pattern, it breaks up a list into its head

(first element) and tail (rest of elements).

Each function contains a set of pattern/expression pairs of the

form

pattern1 = expression1 | . . .

The ver tical bar is used to separate multiple pattern/expression

pairs. When a function is applied to a value, the value is matched

against each pattern in sequence, binding var iables in the pattern

to corresponding components in the argument. When the match

succeeds, the associated expression is evaluated with the



Introduction 3

bindings in effect. In case of a mismatch, the remaining patterns

are tried. When no more patterns are left to try, an error is

repor ted.

Patter ns may contain implicit or explicit guards that place further

constraints on the values that match a pattern. For example, the

second pattern of extract matches only if f applied to x is true.

Functions for destructur ing compound data objects, like car/cdr or

first/rest in Lisp are rarely used, as pattern matching does the

same job, but more intuitively:

fun head (h : : t) = h
fun tail (h : : t) = t

The head /tail functions are mostly used in higher-order

constr ucts.

Patter n Matching
Function application matches data objects against patterns.

Patter ns may be any data objects themselves, and they may or

may not contain var iables. All literal objects match themselves. For

instance, the objects

0 123. 45 "hello" #"x" () [] true

would match themselves exactly (with the usual caveats regarding

real numbers in mind). Note that true is the ‘‘tr uth’’ constant and

not a var iable.

Tuples and lists are matched element-wise, so

(1, 2, 3) matches (1, 2, 3) and

[1, 2, 3] matches [1, 2, 3]

Nested lists and tuples as well as lists containing tuples and tuples

containing lists are matched recursively, so even this data object

would match itself:

[(1, 2), (2, 4), (3, 9)]

Things get more interesting, though, when a pattern contains

variables. For instance,

[(1, x)]



4 Patter n Matching

would match any list containing a 2-tuple with a 1 in the first slot of

the tuple. In addition it would bind the x in the pattern to the value

in the corresponding data object, so matching

[(1, x)] against [(1, 23)]

would bind x to 23.

Patter ns may also contain constr uctors, like : :. In an expression,

: : adds a new element to the front of a list, but in a pattern it

deconstr ucts a list, so matching

(1, x) : : t against [(1, 23), (2, 34), (3, 45)]

would bind x to 23 and t to [(2, 34), (3, 45)].

Patter ns containing the : : constr uctor are frequently put in

parentheses for greater clarity, but this is not a syntactic necessity.

When the identifier _ appears in a pattern, it matches any data

object, just like a var iable, but no value is bound. For instance, in

the length function, which computes the number of elements of a

list, we are not interested in the values of the individual list

elements, so we use _ instead of a var iable:

fun length [] = 0
| (_ : : t) = 1 + len t

The complete pattern matching algorithm can be found in the

mLite Reference (pg 32).

Syntax and Infor mal Semantics
mLite expressions are based upon function application and infix

operators. The usual operators exist:

x + y; x − y; x * y; x/y; x div y; x rem y;
x = y; x < y; x <> y; x<=y; x>=y; . . .

There are also operators for ‘‘consing’’ an element to a list (: :) and

for appending lists and strings (@).

Many operators are polymor phic, like @. Other examples include

the comparison operators (=, <, <>, etc), which can be used to

compare not only numbers, but also characters and strings.



Syntax and Infor mal Semantics 5

There are case-insensitive counter parts to the comparison

operators that begin with a tilde (˜). For example, a˜ = b tests

whether the strings or characters a and b are the same after

folding their case. When applied to numbers, there is no

difference between case-sensitive and case-insensitive operators,

e.g. x = y is equal to x˜=y, if both x and y are numer ic.

Function Application

Function application is denoted by juxtaposition and associates to

the left. E.g. the expression f x y is the same as ( f x) y. It first

applies f to x and the result of f x to y.

This notation is particular ly useful in combination with higher-order

functions. For instance, map is a function of a function f to a

function which maps f over its argument. So:

map ( fn x = x * x) → fn a
map ( fn x = x * x) [1, 2, 3] → [1, 4, 9]

(a → b means ‘‘a maps to b’’ or ‘‘a ev aluates to b’’.)

Parentheses can be used to overr ide the precedence and

associativity of all operators and function application. See the

mLite Reference for a list of all predefined operators (pg 32) and

functions (pg 39).

Alter natively, the apply (‘) operator can be used to change the

associativity of function application. It is a low-precedence

operator that applies its left-hand side to its right-hand side, so

f ‘ g ‘ x * y

would be equal to f (g (x * y)). This is the same as Haskell’s

‘‘dollar’’ operator.

The fn keyword introduces an anonymous function, just like

‘‘lambda’’ in Scheme. Functions defined with fn may have multiple

patter ns, just like functions defined with fun:

fn false = true | _ = false

Curr ied functions can be created by putting multiple patterns

between the fn keyword and the = operator introducing the

function body. For instance,



6 Function Application

fn a b c = a + b + c

is a shorthand notation for

fn a = fn b = fn c = a + b + c

This wor ks ev en in fun declarations:

fun f a b c = a + b + c

Conditional Evaluation

The if syntax is used to evaluate expressions conditionally:

fun gcd (a, b) = if b = 0 then
a

else if a = 0 then
b

else if a < b then
gcd (a, b mod a)

else
gcd (b, a mod b)

Note, though, that it is often more intuitive to replace if by patter n

matching wherever possible:

fun gcd (a, 0) = a
| (0, b) = b
| (a, b) = if a < b then

gcd (a, b mod a)
else

gcd (b, a mod b)

The or and also operators implement shor t-circuit logic

operations:

true or "x" → true
false or "x" → "x"
true also "x" → "x"
false also "x" → false

Because of the short-circuit nature of these operators, the

following expressions are save:



Conditional Evaluation 7

true or 1 div 0
false also 1 div 0

When the operators are chained, they associate to the left and

also binds stronger than or.

The case syntax is merely a thin coating of syntactic sugar on top

of fn:

case x of pattern = expression | . . .

is merely an alternative for m of the function application

( fn pattern = expression | . . . ) x

It moves the argument to the beginning of the expression, which

can increase readability in some cases.

Guarded Patter ns

mLite extends the ML-style pattern matching mechanism by

introducing implicit and explicit guards. A guard is an expression

that is part of a patter n rather than a function body. It is evaluates

after matching a pattern, but before ev aluating the associated

body. The body is only evaluated, if the guard evaluates to a ‘‘tr ue’’

(i.e. non- false) value. Otherwise the match fails and the next

patter n is tried.

This is a version of the gcd function using a guard:

fun gcd (a, 0) = a
| (0, b) = b
| (a, b) where a < b

= gcd (a, b mod a)
| (a, b) = gcd (b, a mod b)

The where keyword introduces the guard a < b. So the first

patter n (a, b) matches only if a < b. The second (a, b), without

any guard, matches if the first one did not match.

When a guard deals only with a single var iable, it can be placed in

the pattern itself. This is called in implicit guard. Implicit guards

often allow to express functions in a more natural way. For

example:



8 Guarded Patter ns

sgn x < 0 = ˜1
| x > 0 = 1
| _ = 0

instead of

sgn x where x < 0 = ˜1
| x where x > 0 = 1
| _ = 0

Note: because = is also used to introduce function bodies, the

guard expression has to be parenthesized when using this

operator, as in

fn (x mod 2 = 0) = ...

or

fn (a, b) where (a = b) = ...

Even function application has to appear in parentheses in guard

expressions to distinguish it from currying. For instance:

fn f x = ... equals fn f = fn x = ...

but

fn ( f x) = ... equals fn x where ( f x) = ...

Parentheses can be omitted when an equal operator or function

application appears inside of a list or tuple.

Multiple implicit guards can be used in the same tuple or list:

fn [x < 0, y > 0] = ...

would be equal to

fn [x, y] where (x < 0 also y > 0) = ...

Each guard evaluates inside of the lexical environment of the

function containing it, so functions can close over identifiers used

in guards. The following filter function is a curried version of the

extract function in the initial example (pg 2):

This function wor ks, because f 2 closes over f , and f x is

ev aluated inside of the environment of f 2.



Guarded Patter ns 9

fun filter f =
let fun f 2 ([], r) = rev r

| ( f x : : xs, r) = f 2 (xs, x : : r)
| (x : : xs, r) = f 2 (xs, r)

in fn a = f 2 (a, [])
end

Exception Handling

The declaration

exception :foo

creates a new exception named :foo.

Exceptions are technically constructors, so their names must

begin with a colon, just like : :.

The raise keyword raises an exception, i.e. it notifies the program

that something interesting happened. When there is no handler for

the given exception, the program reacts to the notification by

ter minating and printing a message. So the expression

raise :foo

will just terminate program execution.

Exceptions are frequently used to indicate unusual conditions

dur ing program execution. For instance, we might expect a list of

single-digit numbers in the sum function. We catch the case of a

non-digit by raising the :not_a_digit exception.

exception :not_a_digit

fun sum [] = 0
| ((x > 9 or x < 0) : : _) = raise :not_a_digit
| (x : : t) = x + sum t

An exception handler is installed with the handle operator. An

exception handler is an ordinary function with exception names as

patter ns. It will handle all exceptions listed as patterns, so the

handler in

(raise :foo) handle :foo = "caught!"



10 Exception Handling

will return the value "caught!".

An exception handler offers a way to provide a non-local exit and a

default value for a failed computation at the same time. It can be

thought of as a ‘‘jump’’ from the raise to the handler. For instance,

we can exit from sum without perfor ming all pending + operations

caused by recursion:

sum [1, 2, 3, 99, 4, 5] handle :not_a_digit = false

Exception handling can also be used to implement backtracking.

Explor ing why the following program generates the correct solution

change(16, [5, 2]) → [5, 5, 2, 2, 2]

is left as an exercise to the reader.

exception :out_of_coins

fun change (0, _) = []
| (_, []) = raise :out_of_coins
| (amount, coin : : coins) =

if coin > amount then
change (amount, coins)

else
coin : : change (amount − coin, coin : : coins)
handle :out_of_coins = change (amount, coins)

Input and Output

There are the usual functions for reading single characters

(readc), reading and writing lines of text (readln, println), as well

as for single-character look-ahead (peekc).

The print and println functions (which differ only in the point that

println emits a final newline sequence) can be used to write any

type of data object. The printer will use a human-readable

representation for the object. These functions are similar to

Scheme’s ‘‘display’’ procedure.

New I/O streams are created by the instream and outstream
functions and closed by close. The garbage collector will

automatically close unused streams.



Input and Output 11

The << (‘‘receive output’’) and >> (‘‘send input’’) operators are used

to redirect the input/output of the I/O functions to user-created

streams.

The following program writes ‘‘Hello, Wor ld!’’ to the file ‘‘hello.txt’’:

outstream "hello.txt" << println "Hello, World!"

The << operator makes the stream on its left-hand side receive the

output of the expression to its right. The >> operator passes input

from the source to its left to the expression on its right.

The following expression re-reads the text written above:

instream "hello.txt" >> readln ()

The sequence (;) operator orders the effects of I/O expressions

(any expressions, in fact). It first evaluates the expression to its left

and then the expression to its right. It associates to the left, so

chains of ; operators are equal to Scheme’s ‘‘begin’’.

The following sequence opens a file, writes to it, and closes it:

val f = outstream "pi"; f << println ‘ 355 / 113; close f

Declaration Syntax and Semantics
val pattern = expression

The val declaration matches one patter n against one expression

and binds the var iables in the pattern to the corresponding

components of the expression. Here are some examples (; ;
introduces a comment to the end of line):

val x = 1 ; ; bind x to 1
val (x, y) = (1, 2) ; ; bind x to 1 and y to 2
val (1, [x], 3) = (1, [2], 3) ; ; bind x to 2

When the pattern does not match the expression, an error is

repor ted.

val p1 = x1 [ and p2 = x2
. . . ]

Multiple bindings can be established in parallel by chaining them

together with and (the brackets indicate an optional part here).



12 Declaration Syntax and Semantics

Parallel bindings will be established by first computing all

expressions and then binding the var iables. So the following

declaration would in fact swap the values of x and y:

val x = y and y = x

BTW, var iables inside of a single pattern are also bound in

parallel, so this version would also swap the values of x and y:

val (x, y) = (y, x)

For sequential bindings, the sequence operator ; is used:

val x = 1; val y = x + 1; val z = y + 1

Function declarations have been used throughout this text without

ev er explaining them in detail.

fun id1 p1 [where xg] = x1 | . . . [and fun id2
. . . ]

fun id1 p1
. . . [where xg] = x [and fun id2

. . . ]

The declaration fun id p = x for any patter n p and expression x
is almost the same as the declaration val id = fn p = x, i.e. it

binds an identifier to a function.

The only difference is that local functions defined with fun may be

recursive, while local functions defined with val may not. At the top

level of a program, there is no difference between these

declarations.

Functions declared by fun can be curried by using shorthand

notations like

fun add a b = a + b

instead of

fun add a = fn b = a + b

Note, how ever, that currying cannot be combined with alternative

patter ns, so the typical ML-style, where multiple cases are used

with curried patterns, cannot be replicated in mLite.

Like most other declarations, multiple instances of fun may be

chained together with and. How ever, the combination of and fun is

only useful when defining local mutually recursive functions. See

let, below, for an example.



Declaration Syntax and Semantics 13

Each pattern of a function may have an associated guard xg (or

an implicit guard). In this case, the pattern matches only, if the

guard expression delivers a ‘‘tr ue’’ value.

local ldecl1 [ ; ldecl2
. . . ] in decl1 [ ; decl2

. . . ] end

The local constr uct ev aluates the declarations ldecl1
. . . and with

the bindings established by these declarations in effect, it

ev aluates decl1
. . .. After evaluating the decl’s , the ldecl bindings

are removed, but the decl’s stay in effect.

local is used to hide local declarations from the top level. For

instance, the revlist function, which reverses a list, could be

implemented as follows:

local
fun rev′ ([], b) = b

| (h : : t, b) = re v′ (t, h : : b)
in

fun revlist a = re v′ (a, [])
end

Here the re v′ function, which uses the accumulator b to reverse

the list a in linear time, is hidden from the outer context.

Only fun and val bindings may be used in local declarations.

let ldecl1 [ ; ldecl2
. . . ] in expr1 [ ; expr2

. . . ] end

let is like local, but instead of declaring bindings in its body (the

par t between in and end), it evaluates expressions. Also, let is a

valid factor in expressions, which local is not. For instance,

val x = let fun e 0 = 1
| x = o (x − 1)

and o 0 = 0
| x = e (x − 1)

in
map e [1, 2, 3, 4, 5]

end

would bind x [0, 1, 0, 1, 0]. e maps even numbers to 1 and odd

numbers to 0. e and o are local and mutually recursive, which is

why they must be declared with fun ... and ...



14

Operator Declarations

Operators are in fact functions in mLite, which can easily be

demonstrated as follows:

+ ( * (1, 2), * (3, 4) ) → 24

(Make sure to leave a blank between ‘‘(’’ and ‘‘*’’, because ‘‘(*’’

would begin a block comment.)

However, not all functions are operators:

max(5, 7) → 7
5 max 7 → error

The infix and infixr keywords are used to declare functions as

infix operators. The nonfix keyword removes an operator

declaration. Note that these declarations actually change the

syntax of the mLite language, so they should be used with care.

The mLite system maintains an internal parse table that contains

the precedence and associativity values of all operators. This table

controls the part of the mLite parser that analyzes infix

expressions. Operator declarations modify this table. The initial

table can be found in the mLite Reference (pg 32).

infix id1 {< , = , >} id2

infixr id1 {< , = , >} id2

An infix declaration adds the identifier id1 to the parse table. The

precedence will be either less than, equal to, or greater than the

precedence of id2, depending on the operator used in between.

E.g.

infix max = +

would assign the precedence of the + operator to max. The new

operator associates to the left. After the above declaration, the

expression

a + b max c + d

would parse as

((a + b) max c) + d



Operator Declarations 15

An infixr declaration wor ks in exactly the same way, but makes

id1 associate to the right.

nonfix id [ , . . . ]

A nonfix declaration removes the given identifiers from the parse

table. After removing an identifier from the table, it no longer

works as an infix operator.

While nonfix can theoretically be applied to predefined operators,

such as + and @, doing so is not recommended.

op f

Any infix operator can be used as a function by prefixing it with the

keyword op. For instance:

op + (5, 7)

or

fold (op +, 0) [1, 2, 3, 4, 5]

Note that the op keyword is merely a hint for the parser and can

often be omitted.

Algebraic Types

type :id = constructor | . . .

The type declaration creates a new data type called :id, which

may be constr ucted and deconstructed by any of the constructors

following the equal sign.

The following declaration defines a ‘‘list’’ type, although this is

actually redundant, because mLite already has a primitive list type:

type :list = :nil | :cons (x, :list)

It means, ‘‘a :list is either :nil or a :cons of some object and

another :list’’. This is the archetypal definition of the list, as it can

be found in pretty much every introduction-level computer science

textbook.

A new :list can then be created by :cons:

:cons (1, :cons (2, :cons (3, :nil)))



16 Algebraic Types

and functions may use the :cons constr uctor in patterns in order to

destr ucture:lists:

fun length :nil = 0
| :cons (_, t) = 1 + length t

Of course, type constr uctors can be infix operators, so after

declar ing

infixr :cons = : :

the following expression can be used to create a list:

1 :cons 2 :cons 3 :cons :nil

and length can be written like this:

fun length :nil = 0
| (_ :cons t) = 1 + length t

The following type defines a binary tree:

type :tree = :leaf (x) | :node (:tree, :tree)

So a :tree is either a :leaf of a value x or a :node of two :tree’s .

Here is a sample tree:

:node
(:node

(:leaf 1,
:leaf 2),

:node
(:node

(:leaf 3,
:leaf 4),

:node
(:leaf 5,
:leaf 6)))

And this is a function computing the depth (the longest path from

the root to a leaf) of a tree:

fun depth :leaf (_) = 1
| :node (l, r) = 1 + max (depth l, depth r)



Algebraic Types 17

Of course, algebraic types can be combined:

type :vtree = :leaf (x) | :node (:tlist)
type :tlist = :nil | :tcons (:vtree, :tlist)

A :vtree is either a :leaf of a value or a :node of a :tlist (tree list),

and a :tlist is either :nil or a :tcons of a :vtree and a :tlist. The

types are mutually recursive and together define a var iadic tree.

exception :id [ and . . . ]

An exception declaration is technically equal to a type declaration

of the for m

type :id = :id

It defines a constant constructor, i.e. a constr uctor that evaluates

to itself. How ever, the exception declaration should be used for

clar ity.



18 Algebraic Types

The Lite Abstract Machine
mLite compiles internally to a Scheme-based domain-specific

language (DSL) that is easily implemented on top of a Scheme

system by means of functions and macros, allowing an mLite

environment to make use of a mature Scheme system as its back-

end.

The Lite Abstract Machine (LAM) language differs from ordinary

Scheme in the following aspects.

• Lambda abstraction is replaced by a patter n matching function

abstraction.

• There are additional special for ms to support algebraic types

and exceptions.

• There is a new ‘‘tuple’’ data type.

• All non-var iadic pr imitive functions are unary, using tuples and

patter n matching to receive multiple arguments.

• Some special for ms and most of the built-in procedures have

been removed or renamed in order to make LAM more similar to

the mLite language.

• File input/output wor ks in a different way.

LAM Syntax
Most LAM data objects look exactly like Scheme data objects, with

the following exceptions:

• Truth values are represented by the identifiers true and false.

• Char literals are represented by #"c" where c may be a single

character or space or newline.

• Lists use square brackets instead of parentheses and : : instead

of the dot (.).

• There is no exter nal representation for vectors. Vectors are

created by the newvec function.



LAM Syntax 19

There is a comprehensive list of mLite/LAM data objects in the

mLite Reference (pg 31).

In the following summary, x denotes any type. In syntactical for ms

(‘‘special for ms’’), x denotes an unevaluated expression and

eval(x) denotes its normal for m, i.e. its value after evaluation.

A summar y of all other type designators can also be found in the

mLite Reference.

Scheme-Like Syntax

(quote x) → x

Retur n the value x.

(begin x1
. . . xn) → eval(xn)

Evaluate each xi in sequence, retur n the value of xn.

(if x1 x2 x3) → eval(x2 | x3)

If eval(x1) is not false, evaluate to eval(x2), else evaluate to

eval(x3). There is no two-argument var iant of if.

(or x1
. . .) → eval(xi)

Retur n the value of the first xi that does not evaluate to false, else

retur n false.

(also x1
. . . xn) → eval(xi)

Evaluate to the value of the first xi that evaluates to false.

Evaluate to xn, if all prior xi ’s evaluated to a non- false value. This

is like Scheme’s ‘‘and’’. It is called also, because and is reserved

for chaining declarations.

(set! id x) → ()

Change the value bound to id to eval(x). Used to implement

recursive bindings.

(Note: the name set! does not have to be a valid mLite identifier,

because it is only used internally.)



20

Non-Scheme Syntax

( fn ( p1 x1) . . .) → f

Create a new function of patterns p1
. . . to expressions x1

. . .. See

function application, below, for further details.

(( fn ( p1 x1) . . .) xa) → eval(x1)

Attempt to match the argument expression xa against the pattern

p1, thereby binding var iables in the pattern to matching values in

the argument. When the match succeeds, evaluate x1 with the

bindings in effect and return eval(x1).

When xa does not match p1, try the other patterns pi, until a

patter n matches or no more patterns can be found. A function

application running out of patterns is an error.

The exact pattern matching algorithm is be explained in the

section on the mLite language itself and, more for mally, in the

mLite Reference (pg 32).

(letrec ((id1 ( p1 x1) . . .) . . .) xb1
. . . xbn) → eval(xbn)

Bind each identifier idi to the corresponding function

( fn ( pi xi) . . .). With those bindings in effect, evaluate xb1
. . . xbn

and finally return xbn.

(%raise : id) → undefined

Raise the exception :id. This operator never retur ns. Exception

handling is discussed in the section on the mLite language (pg 9).

(define id x) → ()

Create the new var iable id and bind it to the value eval(x). The

new binding will be always added to the top level environment, so

the binding created by the for m

(( fn (x (define foo x))) "bar")

will persist even after the function returns. In other words, define
binds var iables to values globally, no matter what context it

appears in.



Non-Scheme Syntax 21

(define_type :id constructor . . .) → ()

Create a new algebraic data type named :id. Each constructor is

either a name beginning with a colon (a constructor name) or a

tuple containing a constructor name in the first slot. Atomic

constr uctors create atomic objects, tuples create constructor

functions.

For instance, the following data type declaration creates the typical

Lisp list type:

(define_type :list :nil (:cons x :list))

Algebraic types are explained in detail in the introduction to the

mLite language (pg 15).

(>> instream x) → eval(x)

Evaluate x with program input redirected to the given instream,

where x is typically an expression whose effect is to read input

from a stream. Return eval(x).

(<< outstream x) → eval(x)

Evaluate x with program output redirected to the given outstream
where x is typically an expression whose effect is to write output

to a stream. Return eval(x).

Scheme-Like Functions

The following functions are almost identical to their Scheme

counter parts:

* + − / < <= = > >= abs call/cc max min not

They implement multiplication, addition, subtraction, the usual

compar ison operations, magnitude (abs), call-with-current-

continuation, the minimum and maximum of two numbers, and the

logical ‘‘not’’.

Unlike their Scheme counterpar ts, all of these functions are unar y,

though, and multiple values are passed to them via tuples so, for

instance, two numbers x and y are added by the for m

(+ (tuple x y))



22 Scheme-Like Functions

Also, none of these functions are var iadic. The arithmetic and

compar ison functions (except for abs) all expect 2-tuples as

arguments. call/cc expects a single value. The not function is

type-agnostic, as in Scheme.

The domain of the comparison operators has been extended, so

they can be applied to chars and strings in addition to numbers.

Renamed Functions

Some functions have been renamed to make them fit better in the

mLite language. A full map of these functions can be found in the

appendix (pg 56).

mLite Functions

The following identifiers denote LAM-level mLite functions:

: :  @  <> ˜< ˜<= ˜<> ˜= ˜> ˜>= close
len println readln ref rev set setvec sub ˜

Some of these functions are explained in detail in the introduction

to the mLite language. A full list can be found in the mLite

Reference.

The following identifiers denote functions that are used internally

in code compiled from mLite programs:

(list x1
. . .) → L

Create a list.

(tuple x1
. . . xk) → Tk

Create a k-tuple.

(%register k f ) → ()

Register exception handler f with exit point k (k is a continuation).

(%unregister x) → x

Unregister the most recently registered exception handler and

retur n x. This is an identity function with the effect of

unregister ing a handler.



mLite Functions 23

(%typecheck :id x L) → x

Check whether x is contained in L, where L is a list of all patterns

representing the type :id. For instance, given the definition

(define_type :list :nil (:cons x :list))

the :cons constr uctor would use %typecheck to make sure its

second argument is of the for m :nil or (:cons x y).



24

Compiling mLite to LAM
This chapter defines the semantics of the mLite language in terms

of the Lite Abstract Machine.

Data Objects
Atomic data objects and identifiers compile to themselves; a → b
means ‘‘a compiles to b’’ in this chapter.

[] → []
() → ()

bool → bool
int → int

real → real
char → char

str → str
id → id

op id → id

Lists and tuples:

[x1, . . .] → (list x1
. . .)

(x1, x2, . . .) → (tuple x1 x2
. . .)

#int(x1, x2, . . .) → (ref (tuple x1 x2. . . ) int)

Algebraic types:

:type → :type

:type (x1, . . .) → (: type x1
. . .)

Functions and Application
fn p = x | . . . → ( fn ( p x) . . .)

fn p1 p2 = x → ( fn ( p1 ( fn ( p2 x))))

( fn p = x | . . .) xa → (( fn ( p x) . . .) xa)

f x → ( f x)

f g x → (( f g) x)



Functions and Application 25

f (g x) → ( f (g x))

f ‘ g x → ( f (g x))

R denotes an infix operator and Rn an infix operator of

precedence n, where higher values indicate stronger binding. RL

and RR indicate left- and right associative operators, respectively

(with equal precedence). Then:

x1 R x2 = R (x1, x2), so x1 R x2 → (R (tuple x1 x2))

Fur thermore:

x RL y RL z → (RL (tuple (RL (tuple x y)) z))

x RR y RR z → (RR (tuple x (RR (tuple y z))))

x R2 y R1 z → (R1 (tuple (R2 (tuple x y)) z))

x R1 y R2 z → (R1 (tuple x (R2 (tuple y z))))

(x) → x

(x R1 y) R2 z → (R2 (tuple (R1 (tuple x y)) z))

x R2 (y R1 z) → (R2 (tuple x (R1 (tuple y z))))

Expressions
Sequences:

x1 or x2 or . . . → (or x1 x2
. . .)

x1 also x2 also . . . → (also x1 x2
. . .)

x1 ; x2 ; . . . → (begin x1 x2
. . .)

Conditional evaluation:

if x1 then x2 else x3 → (if x1 x2 x3)

case x0 of p1 = x1 | . . . → (( fn ( p1 x1) . . .) x0)

I/O redirection:

x1 << x2 → (<< x1 x2)

x1 >> x2 → (>> x1 x2)



26 Expressions

Exceptions

x0 handle :exn1 = x1 | . . .

→ (call/cc ( fn (k (%register k ( fn (:exn1 x1) . . .))
(%unregister x0))))

raise :exn → (%raise :exn)

Local values:

let val p1 = x1 in x2 end → (( fn ( p1 x2)) x1)

let val p1 = x1 and p2 = x2 in x3 end
→ (( fn (( p1 p2) x3)) x1 x2)

Note that:

(( fn (( p1 p2
. . .) xb)) x1 x2. . . )

= (( fn (( p1 p2
. . .) xb)) (tuple x1 x2. . . ))

let val p1 = x1; val p2 = x2 in x3 end
→ (( fn ( p1 (( fn ( p2 x3)) x2))) x1)

let val p1 = x1 in x2; x3 end → (( fn ( p1 (begin x2 x3))) x1)

Local functions:

let fun f1 p1 = x1 in x2 end → (letrec (( f1 ( p1 x1))) x2)

let fun f1 p1 = x1 and f2 p2 = x2 in x3 end
→ (letrec (( f1 ( p1 x1)) ( f2 ( p2 x2))) x3)

let fun f1 p1 = x1; fun f2 p2 = x2 in x3 end
→ (letrec (( f1 ( p1 x1))) (letrec (( f2 ( p2 x2))) x3))

let fun f1 p1 = x1 in x2; x3 end
→ (letrec (( f1 ( p1 x1))) (begin x2 x3))

Declarations
Values:

val v = x → (define v x)

val p = x → (( fn ( p (define v1 v1) . . .)) x)

where each vi is a var iable of the pattern p.



Declarations 27

For example:

val (x, y) = (1, 2)
→ (( fn ((x y) (define x x) (define y y))) (tuple 1 2))

Because define binds var iables at the top level, the construct

(define v v) copies the binding of the identifier v to the top-level

(global) environment.

val p1 = x1 and x2 = p2

→ (( fn (( p1 p2) (define v1 v2) . . .)) x1 x2)

Functions:

fun id p1 = x1 | . . . → (define id ( fn ( p1 x1) . . .))

fun id p1 p2 = x → (define id ( fn ( p1 ( fn ( p2 x)))))

fun id1 p1 = x1 and id2 p2 = x2

→ (letrec ((id1 ( p1 x1)) (id2 ( p2 x2)))
(define id1 id1)
(define id2 id2))

Guarded functions:

fun id p where xg = x

→ (define id ( fn ((GUARD p : : xg) x)))

fun id xig = x

→ (define id ( fn ((GUARD P(ρ xig) : : G(ρ xig)) x)))

Here xig denotes an implicit guard. GUARD is a primitive type of

the Lite Abstract Machine. See the section on Implicit Guard

Patter ns (pg 33) for definitions of the ρ , P, and G functions.

Example:

fun id f x1 = x2 → (define id ( fn ((GUARD x1 : :  ( f x1)) x2)))

Type declarations:

type :id = cons1 | . . . → (define_type :id cons1
. . .)

where each cons denotes a type constructor.

Exceptions:

exception :id → (define_type :id :id)



28 Declarations

Fixity declarations (R∈{< , = , >}):

infix id1 R id2, . . . → ()

infixr id1 R id2, . . . → ()

nonfix id , . . . → ()

These declarations do not compile to any code, but modify the

inter nal infix operator table.

Local Declarations

Local values:

local val v1 = x in val v2 = v1 end
→ (( fn (v1 (define v2 v1))) x)

local val v1 = x1 and v2 = x2 in val v3 = v2 end
→ (( fn ((v1 v2) (define v3 v2))) x1 x2)

local val v1 = x1; val v2 = v1 in val v3 = v2 end
→ (( fn (v1 (( fn (v2 (define v3 v2))) v1))) x1)

local val v1 = x1 in val v2 = v1 and v3 = v1 end
→ (( fn (v1 (( fn ((v2 v3) (define v2 v2) (define v3 v3)))

v1 v1)))
x1)

local val v1 = x1 in val v2 = v1; val v3 = v2 end
→ (( fn (v1 (begin (define v2 v1) (define v3 v2)))) x1)

Local functions:

local fun f p = x in fun g p = x end
→ (letrec (( f ( p x))) (define g ( fn ( p x))))

local fun f p = x and g p = x in fun h p = x end
→ (letrec (( f ( p x)) (g ( p x))) (define h ( fn ( p x))))

local fun f p = x; fun g p = x in fun h p = x end
→ (letrec (( f ( p x)))

(letrec ((g ( p x)))
(define h ( fn ( p x)))))



Local Declarations 29

local fun f p = x in fun g p = x and h p = x end
→ (letrec (( f ( p x)))

(letrec ((g ( p x)) (h ( p x)))
(define g g)
(define h h)))

local fun f p = x in fun g p = x; fun h p = x end
→ (letrec (( f ( p x)))

(begin (define g ( fn ( p x))) (define h ( fn ( p x)))))

Der ived For ms
The letrec and define_type forms are der ived for ms, i.e. they are

composed of simpler LAM for ms inter nally.

letrec translates to fn and set!:

(letrec → ((fn ((f1 f2)
((f1 (pat1 expr1) (set! f1 (fn (pat1 expr1)

(pat2 expr2) (pat2 expr2))
. . .) . . .)

(f2 (pat1 expr1) (set! f2 (fn (pat1 expr1)
(pat2 expr2) (pat2 expr2)
. . .)) . . .)))

expr . . .) ((fn (() expr . . .))))
undefined
undefined)

define_type translates to a set of define’s , the first one defining the

type itself, the subsequent ones the constructors of the type:

(define_type :id constructor . . .)
→ (begin (define :id ′(:id constructor . . .))

(define :id . . .)
. . .)

Atomic constructors:

:id → (define :id ’:id)

Parametr ic constr uctors (carr ying a var iable object):

(:id id) → (define :id ( fn (id (list ’:id id))))



30 Der ived For ms

Parametr ic constr uctors (carr ying a typed object):

(:id1 :id2)
→ (define :id1

( fn (x (list ’:id1 (%typecheck :id1 x :id2)))))

Example:

(define_type :list :nil (:cons x :list))
→ (begin (define :list ′(:list : nil (:cons x :list)))

(define :nil ’:nil)
(define :cons

( fn ((x list1)
(list ’:cons x (%typecheck ’:cons list1 :list))))))



31

mLite Reference

mLite/LAM Data Objects

Type Examples Designator

boolean true ; false b
integer 0; 123 n
real 0. 0; 3. 14; 1. 23e6 r
char #x; #space c
str ing "hello"; "\"\"" s
unit () ()
tuple (x, y, z) Tk
list [x, y, z]; [x: : [y]]; [] L
vector newvec (10, x) V
function fn x = x + 1 f
instream instream " file" SI
outstream outstream " file" SO
identifier foo ; f ′; =/= id
constr uctor :cons :id

Note: in LAM programs, there are no commas in lists and tuples,

and function application is Scheme-like, e.g.:

(newvec (tuple 10 x)) instead of newvec (10, x).

As in Scheme, the sequences ‘‘\\’’ and ‘‘\"’’ can be used to escape

the corresponding characters inside of string literals. There are no

other escape sequences.

The unit object () is used as an unspecific value. For example, it is

passed to procedures not expecting any specific arguments and

retur ned by procedures not returning any meaningful value.

Tk denotes a k-tuple, i.e. a tuple of k elements. There are no

tuples with k = 1, because these would just denote single values,

i.e. (x) = x for any value x. The 0-tuple is equal to unit.

There are two groups of identifiers. One consists of letters,

decimal digits, and the following special characters: underscore

(_), apostrophe (′), colon (:). These identifiers must begin with a



32 mLite/LAM Data Objects

non-digit character. They are case-sensitive.

The other group (‘‘operator identifiers’’) consist of sequences of

the following special characters:

! @ $ % ˆ & * − + = < >  / ˜ ‘

Predefined Infix Operators

Precedence Operators Associativity

high o right

ˆ right

* div mod rem / left

+ − left

:: @ right

low < <= <> = > >= left

˜< ˜<= ˜<> ˜= ˜> ˜>=

Patter n Matching Algorithm
• () matches ().

• true matches true and false matches false.

• a number x matches a number y, if x = y.

• a char c1 matches a char c2, if c1 = c2.

• a str ing s1 matches a string s2, if s1 = s2.

• the special pattern _ matches any object.

• an identifier id matches any object and binds id to that object.

• a list L1 matches a list L2, if len L1 = len L2 and each element

ai of L1 matches the corresponding element bi of L2.

• the pattern h : : t matches a list of at least one element and

binds the identifier h to the first element of the list and the

identifier t to the rest of the list.

• a k-tuple Tk,1 matches a k-tuple Tk,2, if each #iTk,1 matches

#iTk,2 for 0 ≤ i < k.

• a constant constructor :id matches itself.



Patter n Matching Algorithm 33

• an exception :exn matches itself.

• a  parametr ic constr uctor :id (id1, . . .) matches any object

created by that constructor and binds any var iables in the

patter n to the corresponding values in the object.

Implicit Guard Patter ns

Infor mally: an implicit guard is an expression inside of a pattern.

Function application, infix operators, or, and also are allowed

inside of implicit guard expressions. Guards using function

application or = operators must be parenthesized to distinguish

them from currying and function bodies.

The function ρ converts each implicit guard pattern to a tuple

(P, G) consisting of an (unguarded) pattern P and a guard

expression G. P t is the pattern component of the (P, G) tuple t,
and G t is its guard component. ∅ means ‘‘no guard expression’’.

unit → (unit, ∅)

bool → (bool, ∅)

int → (int, ∅)

real → (real, ∅)

str → (str, ∅)

id → (id , ∅)

Function application is the combination (⋅) of two identifiers, where

the rightmost identifier is the pattern.

f x → ( f , ∅) ⋅ (x, ∅) → (x, f x)

Higher order application:

f g x → (g, f g) ⋅ (x, ∅) → (x, ( f g) x)

Function composition:

f (g x) → ( f , ∅) ⋅ (x, g x) → (x, f (g x))

More generally ( f and x may be be any expression):

ρ ( f x) → (P(ρ x), f ′ x′)



34 Implicit Guard Patter ns

where f ′ = G (ρ f ), if G (ρ f ) ≠ ∅ else f ′ = P (ρ f ).
and x′ = G (ρ x), if G (ρ x) ≠ ∅, else x′ = P (ρ x).

Tuples:

(a1, a2, . . .)
→ ((P (ρ a1), P (ρ a2), . . .), G (ρ a1) also G (ρ a2) also . . .)

I.e. a tuple is converted to a tuple with each guarded pattern

replaced by the corresponding unguarded pattern. The guard of

the tuple is the conjunction of all guards in the tuple.

Lists wor k analogously:

[a1, . . .] → ([P (ρ a1), . . .], G (ρ a1) also . . .)

The guard G (ρ p) of an unguarded pattern p may be thought of

as true, although an actual implementation would simply omit the

guard in the conjunction.

Infix expressions: for each infix operator R,

id R x → (id , R (id , x))

x R id → (id , R (x, id))

id1 R id1 → (id1, R (id1, id1))

Also note that:

id1 R id2 → error

That is, only one single identifier may be contained in an infix

expression x, and that identifier will be the resulting unguarded

patter n P (ρ x). How ever, the single identifier may appear multiple

times, e.g.:

ρ (10 < id also id < 20) → (id , 10 < id also id < 20)

The detailed conversion rules for infix expression are rather

elaborate. For a complete for mal descr iption see [HOL14].



35

mLite Syntax Summary

Declarations

val p = x and . . .

Bind var iables of pattern p to corresponding components of

expression x. Expressions in bindings chained with and ev aluate

before binding any values.

fun id p [where xg] = x | . . . and . . .

fun id p . . . [where xg] = x and . . .

Bind each identifier id to the corresponding function

fn p = x | . . .

Multiple patterns p, q . . . indicate currying, e.g.:

fn p q . . . = x equals fn p = fn q = . . . x

Note that multiple patterns (separated by |) cannot be combined

with currying. Each function is either curr ied or has multiple cases.

Multiple fun declarations chained together with and may be

mutually recursive, even in local (let, local) contexts.

The where keyword introduces an explicit guard expression. A

patter n matches only if xg ev aluates to a non- false value.

Each pattern p may contain implicit guards; see the corresponding

section in this reference (pg 33) for details.

type :id = cons | . . .

Define algebraic type :id as union of the subsequent constructors.

Each constructor may be of the for m :id, defining an atomic

instance of the type, or of the for m

: id (id . . .)

where each id may be an (untyped) var iable or a type name. A

constr uctor containing a type name in a for mal argument expects

a value of the given type in the corresponding actual argument.

E.g., the constructor :c defined in

type :L = :N | :c (x, :L)



36 Declarations

would accept any type of argument in the place of x, but only

values of the type :L in the second slot of its argument.

local ldecl1,1; . . . in ldecl2,1; . . . end

First evaluate the ldecl1’s , giving a new environment E, then

ev aluate the ldecl2’s in that environment, adding them to the top

level environment. Eventually remove the environment E, but keep

the bindings established by ldecl2.

I.e.: define ldecl2 in a local context containing ldecl1, hiding the

ldecl1’s from the top level.

Each ldecl may be a val or a fun declaration.

infix id1 {< , = , >} id2, . . .

Add the identifier id1 to the internal operator precedence table as

a left-associative operator. After adding the identifier to the table, it

will be recognized as an infix operator, so x id1 y will map to

id1 (x, y).

The less/equal/greater sign together with the second identifier id2

defines the precedence of the id1 operator :

id1 < id2 id1 has lower precedence than id2

id1 = id2 id1 has the same precedence as id2

id1 > id2 id1 has higher precedence than id2

infix itself does not define the operator, it merely makes it known

to the mLite parser.

infixr id1 {< , = , >} id2, . . .

The infixr operator wor ks exactly as the infix operator (above),

but adds id1 as a right-associative operator.

nonfix id , . . .

The nonfix declaration removes the given identifiers from the

inter nal operator precedence table. After nonfix-ing an identifier, it

will no longer parse as an infix operator (but may still be used as a

function).



37

Expressions

unit, bool, int, real, char, str

The atomic data types evaluate to themselves.

(x1, . . . , xk)

The k-tuple notation (a tuple of k elements) evaluates to a k-tuple

with all its elements in normal for m, i.e.: (eval (x1), . . . , eval (xk)).

[x1, . . .]

List notation evaluates to a list with all elements in normal for m,

i.e.: [eval (x1), . . .].

fn p1
. . . = x1 | . . .

The fn syntax evaluates to a function from patterns pi to

expressions xi. The ver tical bar separates individual cases.

Multiple patterns between fn and = indicate currying. See fun for

details.

In a curried function, an explicit guard is associated with the

inner most function, e.g.:

fn a b c  where g = x equals fn a = fn b = fn c where g = x.

f x

Juxtaposition of a function f and an object x applies the function

f to x. Fur thermore:

f g x = ( f g) x

f (g x) = f (g x)

f ‘ g x = f (g x)

x1 R x2

Functions defined as infix operators (R; see infix, pg 36) may be

used as operators in infix expressions. See the operator table on

page 32 for a full list of pre-defined operators. The usual

precedence and associativity rules apply, e.g.:

a − b − c = ((a − b) − c)

a * b + c * d = (a * b) + (c * d)



38 Expressions

Also note:

f x R y = ( f x) R y

f ‘ x R y = f (x R y)

#intTk

This is a shorthand for m of ref (Tk , int).

(x1; x2; . . .)

Evaluate the given expression in sequence, from left to right.

Usually used for effect.

x1 also . . . also xn

Evaluate to the first false expression xi or to xn if all prior

expressions evaluated to non- false values. false also x never

ev aluates x.

x1 or x2 or . . .

Evaluate to the first non- false expression xi or to false, if all

expressions are false. true or x never evaluates x.

x0 handle :id1 = x1 | . . .

Evaluate x0 with the exception handler fn :id1 = x1 | . . . in effect.

Raising any :idi defined in the exception handler will evaluate and

retur n the corresponding xi.

raise :id

Raise the exception :id. Raising an exception aborts the current

computation and invokes the innermost handler handling the given

exception. Exceptions without a handler terminate program

execution.

if x1 then x2 else x3

First evaluate x1. If it evaluates to a non- false result, evaluate and

retur n x2 else evaluate and return x3.

case x0 of p1 = x1 | . . .

An alternative for m of ( fn p1 = x1 | . . .) x0.



Expressions 39

x1 >> x2

Evaluate expression x2 with program input read from x1. x1 must

ev aluate to an instream object.

x1 << x2

Evaluate expression x2 with program output written to x1. x1 must

ev aluate to an outstream object.

mLite Function Summary

Ar ithmetics

r1 * r2 → r

Retur n the product of r1 and r2.

r1 + r2 → r

Retur n the sum of r1 and r2.

r1 − r2 → r

Retur n the difference between r1 and r2.

r1 / r2 → r

Retur n the quotient of r1 and r2.

r1<r2 | r1<= r2 | r1<> r2 | r1=r2 | r1>r2 | r1>= r2 → b

These functions implement the ‘‘less-than’’, ‘‘less/equal’’, ‘‘not-

equal’’, ‘‘equal’’, ‘‘greater-than’’, and ‘‘greater/equal’’ predicates,

respectively. They retur n true, if their conditions apply.

c1<c2 | c1<= c2 | c1<> c2 | c1=c2 | c1>c2 | c1>= c2 → b

The domain of the above predicates also covers the char type.

When applied to two chars,

c1 R c2

holds, if and only if

ord c1 R ord c2

for any operator R of the above set.



40 Ar ithmetics

s1<s2 | s1<= s2 | s1<> s2 | s1=s2 | s1>s2 | s1>= s2 → b

The domain of the above predicates also covers the string type.

The final character of each string is assumed to be NUL. So,

s1 < s2, if and only if there is a position p so that

ref (s1, p) < ref (s2, p)

and each

ref (s1, i) = ref (s2, i)

for 0 ≤ i < p.

s1 > s2, if s2 < s1. s1<= s2, if not s2 > s1. s1>= s2, if not s1 < s2.

s1 = s2, if len s1 = len s2 and all ref (s1, i) = ref (s2, i) for

0 ≤ i < k, where k = len s1. s1 <> s2, if not s1 = s2.

x = b | x = [] | x = () → b

The = operator can be safely applied to any type of object, as long

as the other object is a bool, or the empty list, or unit. In this case,

it returns true, when the two objects are identical. It returns false,

if the objects are not identical — this includes the case that the

objects have incompatible types, e.g. 123 = () → false.

abs r → r

Retur n the magnitude |r | of r.

ceil r → n

Retur n r (ceiling of r, the smallest integer that is not smaller

than r).

n1 div n2 → n

Retur n n1/n2 (the floored quotient of n1 and n2).

floor r → n

Retur n r (the largest integer that is not larger than r).

gcd (n1, n2) → n

Retur n the greatest common divisor of n1 and n2, i.e. the largest

integer that divides both n1 and n2.



Ar ithmetics 41

lcm (n1, n2) → n

Retur n the least common multiple of n1 and n2, i.e. the smallest

integer that is a multiple of both n1 and n2.

max (r1, r2) → r

Retur n the larger one of the numbers r1 and r2. Retur n a real

number, if at least one of the numbers is a real number, else

retur n an integer.

min (r1, r2) → r

Retur n the smaller one of the numbers r1 and r2. Retur n a real

number, if at least one of the numbers is a real number, else

retur n an integer.

n1 mod n2 → n

Retur n n1 − n1/n2 ⋅ n2 (the modulus of n1 and n2).

f1 o f2 → f

Retur n the function composition fn x = f1 ( f2 x).

n1 rem n2 → n

Retur n n1 − trunc (n1/n2) ⋅ n2 (the truncated division remainder of

n1 and n2).

sgn r → n

Retur n the sign of r: r < 0 → −1, r > 0 → 1, and r = 0 → 0.

trunc r → n

Retur n sgn(r) ⋅ |r | (in other words: remove the fractional part of

r and return the integer part only).

sqrt r → r

Retur n √r .

r1 ˆ r2 → r

Retur n x y, where x = r1 and y = r2.



42 Ar ithmetics

˜r → r

Retur n −r, the negative value of r.

r1˜< r2 | r1˜<= r2 | r1˜<> r2 | r1˜= r2 | r1˜> r2 | r1˜>= r2 → b

For numbers, these operators are identical to <, <=,, =, etc.

c1˜< c2 | c1˜<= c2 | c1˜<> c2 | c1˜= c2 | c1˜> c2 | c1˜>= c2 → b

These are shorthand notations for

c_downcase c1 R c_downcase c2

where R is in {< , <=, = , <> , > , >=}.

s1˜< s2 | s1˜<= s2 | s1˜<> s2 | s1˜= s2 | s1˜> s2 | s1˜>= s2 → b

These are equal to their counterpar ts (<, <=, =, etc), but use the

above case-folding var iants of the comparison operators to

compare individual characters.

Str uctural Operations

Many functions in this section are curried higher-order functions.

The signatures of these functions are specified like this:

map f L → L

which makes the function appear to take more than one argument.

However, the above is merely a shorthand notation for

map f → L → L

So, for example, map is always applied to a single unary function,

giving another function L → L, which may then be applied on the

spot to a list. E.g.: map ( fn x = 2ˆx) [1, 2, 3, 4, 5].

x : : L → L

Attach a new element x to the front of an existing list L, giving a

new list.

L1@L2 → L

Retur n a new list that consists of the concatenation of L1 and L2.



Str uctural Operations 43

s1@s2 → s

Retur n a new str ing that consists of the concatenation of the

str ings s1 and s2.

append_map f L → L

append_map is like map, but appends the elements of its result

rather than consing them, i.e.:

append_map f [a, b, c]

would be equal to

f a @ f b @ f c

clone x → x

Retur n an exact copy of the object x. Note that only vectors are

actually cloned by this function, because all other data types are

immutable.

x1 eql x2 → b

The eql function is an extension of the = operator that covers all

data types of the mLite language and also allows to compare

incompatible types, resulting in false.

Lists, vectors, and tuples are compared element-wise and

recursively. This function is similar to Scheme’s ‘‘equal?’’

procedure.

explode s → L

Retur n a new list that contains the same characters as the string s
in the same order. This is the reverse operation of implode.

filter f L → L

Retur n a new list containing all elements xi satisfying the

condition f xi from the list L.

fold ( f , x) L → L

Fold the list L by applying f to the neutral element x and the first

element of L (giving a result R) and then applying f to R and the

second element of L, etc.



44 Str uctural Operations

Formally, fold ( f , x) [a, b, c] is equal to f ( f ( f (x, a), b), c).

foldr ( f , x) L → L

The foldr function is like fold , but folds the list L to the right, so

foldr ( f , x) [a, b, c] is equal to f (a, f (b, f (c, x))).

foreach f L → ()

The foreach function is like map, but calls f only for effect. It does

not collect any result and always retur ns ().

head L → x

Retur n the first element of a list.

implode L → s

Retur n a new str ing that contains the same characters as the list

L in the same order. This is the reverse operation of explode.

iota n → L

Retur n a list [1, 2, . . . , n].

iota (n1, n2) → L

Retur n a list [n1, n1 + 1, . . . , n2].

len Tk | len L | len V | len s → n

Retur n the length of the given data object. For lists and vectors,

this is the number of elements, for strings the number of

characters, for tuples, their order.

map f L → L

Map the function f over the list L, generating a new list

[ f a1, f a2, . . .]

where each ai is an element of L.

newstr (n, c) → s

Retur n a new str ing of the length n containing the character c in all

positions of the string.



Str uctural Operations 45

newvec (n, x) → V

Retur n a new vector of the length n containing the element x in all

slots of the vector.

order x → n

Retur n the order of x. The order of each ‘‘tr ue’’ tuple Tk is k. The

order of () is zero, and the order of all other objects is one, i.e. all

singular objects are 1-tuples.

ref (L, n) | ref (Tk , n) | ref (V , n) → x

Extract the n’th element of the given data object. Extracting an

element from a vector is guaranteed to be an O(1) operation.

ref (s, n) → c

Extract the n’th char of the string s.

rev L → L

Retur n a new list containing the elements of L in reverse order.

rev s → s

Retur n a new str ing containing the characters of the string s in

reverse order.

set (Tk , n, x) → Tk

Retur n a copy of the tuple Tk with the n’th element replaced by x.

set (s, n, c) → s

Retur n a copy of the string s with the n’th char replaced by c.

set (V , n, x) → V

Change the n’th element of the vector V to x.

Note: this will mutate V !

setvec(V , n1, n2, x) → V

Change the elements in the slots n1
. . . n2 − 1 of the vector V to x.

Note: this will mutate V !



46 Str uctural Operations

sub (L, n1, n2) → L

Retur n a new list containing the elements at positions n1
. . . n2 − 1

of the original list L.

sub (s, n1, n2) → s

Retur n a new str ing containing the characters at positions

n1
. . . n2 − 1 of the original string s.

tail L → L

Retur n the tail (all but the first element) of a list.

zip L1 L2 → L

Combine the lists L1 and L2 pairwise, retur ning a list of tuples:

zip [1, 2, 3] [4, 5, 6] → [(1, 4), (2, 5), (3, 6)]

This is identical to zipwith ( fn x = x).

zipwith f L1 L2 → L

Combine the lists L1 and L2 pairwise using the function f , so that

zipwith f [1, 2, 3] [4, 5, 6]

would be equal to

[ f (1, 4), f (2, 5), f (3, 6)]

Type Predicates and Conversion

bool x → b

Retur n true, if x is a boolean.

char x → b

Retur n true, if x is a char.

chr n → c

Retur n the character at the code point n. Inverse operation: ord .

int x → b

Retur n true, if x is an integer.



Type Predicates and Conversion 47

not x → b

Retur n true, if x is false, else return false (logical ‘‘not’’; all values

but false are considered to be ‘‘tr ue’’).

ntos r → s

Retur n a str ing representation of the number r. Negative numbers

will have a ‘‘-’’ prefix.

ord c → n

Retur n the code point of the character c. Inverse operation: chr.

real x → b

Retur n true, if x is a real number. Note: int x implies real x.

ston s → r | false

Convert a numer ic str ing to a number. If the string s contains a

decimal point (‘‘.’’), return a real number, otherwise return an

integer. Both ‘‘−’’ and ‘‘˜’’ will be accepted as a leading minus sign.

When s does not represent a valid number, ston will return false.

str x → b

Retur n true, if x is a string.

vec x → b

Retur n true, if x is a vector.

Char Functions

c_alphabetic c → b

Retur n true, if c is a letter of the English alphabet.

c_downcase c → c

If c_upper c, retur n the lower-case var iant of c, else return c.

c_lower c → b

Retur n true, if c is a lower-case letter of the English alphabet.



48 Char Functions

c_numeric c → b

Retur n true, if c is a decimal digit.

c_upcase c → c

If c_lower c, retur n the upper-case var iant of c, else return c.

c_upper c → b

Retur n true, if c is an upper-case letter of the English alphabet.

c_whitespace c → b

Retur n true, if c is a non-printing character (blank, or ASCII HT,

LF, CR, or FF).

Input/Output Functions

append_stream s → SO

Open the file s for writing and return an outstream object for

accessing that file. When the file already exists, append output to

the existing file.

close SI | close SO → ()

Close the given instream or outstream. Note that streams are also

closed automatically (by the garbage collector), so there is

nor mally no need to use close, except for the rare case where

output must be committed at a specific point during program

execution.

eof x → b

Retur n true, if x is an end-of-file indicator (EOF), as delivered by

readc, peekc, and readln.

instream s → SI

Open the file s for reading and return an instream object for

accessing that file. An error is reported, if the file does not exist.

load s → ()

Load the program in the file s as if typed in at the mLite prompt.

When an error occurs, stop loading.



Input/Output Functions 49

outstream s → SO

Open the file s for writing and return an outstream object for

accessing that file. When the file already exists, it is truncated to

zero length.

peekc () → c

Read a character from the current input stream and return it. Do

not consume the input character, i.e. a subsequent read operation

will yield the same character again. When there are no (more)

characters to be read from the stream, return EOF.

print x → ()

Wr ite a suitable representation of the expression x to the current

output stream.

println x → ()

Shor thand for ( print x; print #"newline").

readc () → c

Read a character from the current input stream and return it.

When there are no (more) characters to be read from the stream,

retur n EOF.

readln () → s

Read one line of characters from the current input stream and

retur n it. A line is delimited by a platfor m-specific newline

sequence or the EOF. When there are no (more) characters to be

read from the stream, return EOF.



50

Appendix

mLite Grammar
; ; comment is a comment to the end of line.

(* comment *) is a nestable block comment.

The & grammar operator indicates that no spaces are allowed

between two sequences, i.e. it defines lexemes rather than

sentences. For instance, 1 2 would match 1 2 with any number of

blanks in between, but 1 & 2 would only match 12 (with no blanks

between the digits).

top :=
decl ( ‘;’ top ) *

| expr ( ‘;’ top ) *
| ε

program := decl + expr

decl :=
‘val’ pat ‘=’ expr ( ‘and’ pat ‘=’ expr ) *

| ‘fun’ id curried_match ( ‘and’ id curried_match ) *
| ‘type’ id ‘=’ cons ( ‘|’ cons ) *
| ‘exception’ :id ( ‘and’ :id ) *
| ‘local’ ldecls ‘in’ ldecls ‘end’
| ‘infix’ fdecl ( ‘,’ fdecl ) *
| ‘infixr’ fdecl ( ‘,’ fdecl ) *
| ‘nonfix’ id ( ‘,’ id ) *

fdecl :=
id ‘=’ id

| id ‘<’ id
| id ‘>’ id

cons :=
:id

| :id ‘(’ id ( ‘,’ id ) * ‘)’



mLite Grammar 51

ldecls := ldecl ( ‘;’ ldecls ) *

ldecl :=
‘val’ pat ‘=’ expr ( ‘and’ pat ‘=’ expr ) *

| ‘fun’ id curried_match ( ‘and’ id curried_match ) *

curried_match :=
guarded_pat + ’=’ expr

( ‘|’ guarded_pat + ‘=’ expr ) *

match := guarded_pat ‘=’ expr ( ‘|’ guarded_pat ‘=’ expr ) *

guarded_pat :=
pat

| pat ‘where’ or_expr

pat := pat_or

pat_or :=
pat_also

| pat_or ’or’ pat_also

pat_also :=
pat_infix

| pat_also ’or’ pat_infix

pat_infix :=
pat_funapp

| pat_infix id pat_infix

pat_funapp :=
pat_primary

| pat_funapp pat_primary

pat_primary :=
unit

| bool
| int



52 mLite Grammar

| real
| char
| str
| id
| ‘_’
| list_pat
| tuple_pat
| :id id
| :id tuple_pat
| ’(’ pat ’)’

list_pat :=
‘[’ ‘]’

| ‘[’ pat ( ‘,’ pat ) * ‘]’
| ‘[’ pat ‘::’ id ‘]’
| ‘[’ pat ‘::’ list_pat ‘]’

tuple_pat := ‘(’ pat ( ‘,’ pat ) + ‘)’

expr :=
case_expr

| case_expr ‘<<’ case_expr
| case_expr ‘>>’ case_expr

sequence := case_expr ( ‘;’ caseexpr ) *

case_expr :=
ifexpr

| ‘case’ expr ‘of’ match

ifexpr :=
raise_expr

| ‘if ’ expr ‘then’ expr ‘else’ expr

raise_expr :=
handle_expr

| ‘raise’ :id



mLite Grammar 53

handle_expr :=
or_expr

| or_expr ‘handle’ match

or_expr :=
also_expr

| or_expr ‘or’ also_expr

also_expr :=
apply

| also_expr ‘also’ apply

apply :=
infix

| apply ‘‘’ infix

infix :=
funapp

| infix id infix

funapp :=
primary

| funapp primary

primary :=
unit

| bool
| int
| real
| char
| str
| tuple
| list
| id
| ‘#’ int tuple
| ‘#’ int id
| ‘fn’ curried_match



54 mLite Grammar

| ‘let’ ldecls ‘in’ sequence ‘end’
| ‘(’ sequence ‘)’

list :=
‘[’ ‘]’

| ‘[’ expr ( ‘,’ expr ) * ‘]’
| ‘[’ expr ‘::’ list ‘]’

tuple := ‘(’ expr ( ‘,’ expr ) + ‘)’

unit := ‘(’ ‘)’

bool :=
‘true’

| ‘false’

int :=
natural

| ‘˜’ & natural

natural :=
digit

| digit & natural

real :=
positive_real

| ‘˜’ & positive_real

positive_real :=
int & ‘.’ & int

| int & ‘e’ & int
| int & ‘.’ & int & ‘e’ & int

char := ‘#"’ & <c> & ‘"’

str := ‘"’ & <c> * & ‘"’

:id := ’:’ & name



mLite Grammar 55

id :=
name

| opname

name :=
sym_char

| sym_char & sym_chars

op_name :=
op_char

| op_char & op_name

sym_char :=
‘a’ | ... | ‘z’

| ‘A’ | ... | ‘Z’
| ‘:’ | ‘_’ | ‘’’

sym_chars :=
sym_char

| digit
| sym_chars & sym_chars

op_char :=
‘!’ | ‘@’ | ‘$’ | ‘%’ | ‘ˆ’

| ‘&’ | ‘*’ | ‘−’ | ‘+’ | ‘<’
| ‘=’ | ‘>’ | ‘/’ | ‘˜’ | ‘‘’

digit :=
‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’

| ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’



56

mLite and Scheme Functions

mLite Scheme

c_alphabetic char-alphabetic

c_downcase char-downcase

c_lower char-lowercase

c_numeric char-numer ic

c_upcase char-upcase

c_upper char-uppercase

c_whitespace char-whitespace

chr integer->char

div quotient

eof eof-object?

explode str ing->list

instream open-input-file

newstr make-str ing

newvec make-vector

ord char->integer

outstream open-output-file

peekc peek-char

print display

readc read-char

rem remainder

Differences to ML

• The module language is completely absent.

• There is no static type system. This may change, though.

• Lists are heterogenous, this may also change.

• Function names are not repeated in fun definitions, e.g.:

fun not true = false | _ = true
instead of

fun not true = false | not _ = true.

• An equal sign separates the pattern from the body in fn, e.g.:

fn x = x instead of fn x => x.



Differences to ML 57

• Curr ying cannot be combined with multiple patterns, e.g. the

function

fun p x 0 = 1 | x y = p x (y − 1)
would have to be written using a tuple as argument:

fun p (x, 0) = 1 | (x, y) = p (x, y − 1)

• There are implicit and explicit guards, e.g.:

fun f (a, b) where a < b = ...
or

fun f x < 0 = ...

• All user-defined types and constructors must begin with a colon,

e.g.: :cons, :node, etc.

• Algebraic types are declared with the type keyword instead of

datatype, and the declaration syntax is different, e.g.

type :list = :nil | :cons (x, :list)
instead of

datatype ′a list = nil | cons of ′a * ′a list

• Exceptions are just atomic types, so exception :exn is equal to

type : exn = : exn.

• Only val and fun are allowed in the declaration parts of let and

local.

• There are no val rec declaration, fun must be used instead.

• To concatenate strings, the overloaded @ operator is used

instead of the ˆ operator (which is used for exponentiation).

• Logical or is named or instead of orelse.

• Logical and is named also instead of andalso.

• The <, ≤, <>, =, >, and ≥ operators implement case-

insensitive lexical comparison.

See the mLite Function Summary (pg 39) for an overview of

predefined mLite functions. The function librar y differs largely from

ML’s .



58

References
[DEFSML] Robin Milner, et al.

‘‘The Definition of Standard ML (Revised)’’

MIT Press, 1997

[HOL14] Nils M Holm

‘‘Implicit Guard Expressions in

Functional Programming Languages’’

Self-published, 2014

[R4RS] William Clinger and Jonathan Rees (Editors)

‘‘Revised(4) Report on the

Algor ithmic Language Scheme’’

ACM Lisp Pointers IV (July-September 1991)


