The mLite Language

Nils M Holm, 2014

mLite is a general-purpose, functional, lightweight, dynamic programming language. It borrows ideas from both the Scheme [R4RS] and Standard ML [DEFSML] languages, taking most of its syntax from ML and its dynamic nature from Scheme. It extends ML-style pattern matching by adding guarded patterns and also introduces the principle of implicit guards. The implementation presented here is intended to be portable and easily realized on top of existing Scheme systems.

Contents

Introduction

Pattern Matching
Syntax and Informal Semantics
Function Application
Conditional Evaluation
Guarded Patterns
Exception Handling
Input and Output
Declaration Syntax and Semantics
Operator Declarations
Algebraic Types
The Lite Abstract Machine
LAM Syntax
Scheme-Like Syntax
Non-Scheme Syntax
Scheme-Like Functions
Renamed Functions
mLite Functions
Compiling mLite to LAM
Data Objects
Functions and Application
Expressions

2 Declarations 26
3 Local Declarations 28
4 Derived Forms 29
5 mLite Reference 31
6 mLite/LAM Data Objects 31
7 Predefined Infix Operators 32
9 Pattern Matching Algorithm 32
10 Implicit Guard Patterns 33
11 mLite Syntax Summary 35
14 Declarations 35
15 Expressions 37
18 mLite Function Summary 39
18 Arithmetics 39
19 Structural Operations 42
20 Type Predicates and Conversion 46
21 Char Functions 47
22 Input/Output Functions 48
22 Appendix 50
24 mLite Grammar 50
24 mLite and Scheme Functions 56
24 Differences to ML 56
25 References 58

Introduction

m Lite is a functional language with immutable data types (with the exception of vectors), which reduces surprises in the process of program development to a minimum. Its syntax is lightweight and math-oriented. Here is a simple example that creates a list of numbers (iota), and then uses a generic extract function to extract all multiples of 7 from such a list:

```
fun iota \((0, a)=a\)
    \(1(x, a)=\) iota \((x-1, x:: a)\)
    I \(x=\) iota \((x,[])\)
```

fun extract $(f,[])=[]$
$1(f, f x:: x s)=x:: \operatorname{extract}(f, x s)$
$\mid(f, x:: x s)=\operatorname{extract}(f, x s)$;
$\operatorname{extract}($ fn $x=x \bmod 7=0$, iota 123)
mLite makes extensive use of pattern matching. All functions are unary, and multiple arguments are passed to functions in tuples and destructured by patterns. Tuples are delimited by parentheses and their elements are separated by commas. Lists use square brackets instead of parentheses.

Lists and tuples are built dynamically in expressions (but not in patterns), so [$1+2,3+4$] gives [3,7] and (a, b) would be a tuple containing the values of the variables a and b.
$::$ is the "cons" operator that adds a new element to the front of a list. When it appears in a pattern, it breaks up a list into its head (first element) and tail (rest of elements).

Each function contains a set of pattern/expression pairs of the form
pattern $_{1}=$ expression $_{1} \mid \cdots$
The vertical bar is used to separate multiple pattern/expression pairs. When a function is applied to a value, the value is matched against each pattern in sequence, binding variables in the pattern to corresponding components in the argument. When the match succeeds, the associated expression is evaluated with the
bindings in effect. In case of a mismatch, the remaining patterns are tried. When no more patterns are left to try, an error is reported.

Patterns may contain implicit or explicit guards that place further constraints on the values that match a pattern. For example, the second pattern of extract matches only if f applied to x is true.

Functions for destructuring compound data objects, like car/cdr or first/rest in Lisp are rarely used, as pattern matching does the same job, but more intuitively:
fun head ($h:: t$) $=h$
fun tail ($h:: t)=t$
The head/tail functions are mostly used in higher-order constructs.

Pattern Matching

Function application matches data objects against patterns. Patterns may be any data objects themselves, and they may or may not contain variables. All literal objects match themselves. For instance, the objects
0123.45 "hello" \#"x" () [] true
would match themselves exactly (with the usual caveats regarding real numbers in mind). Note that true is the "truth" constant and not a variable.

Tuples and lists are matched element-wise, so
$(1,2,3)$ matches $(1,2,3)$ and
[1,2,3] matches [1,2,3]
Nested lists and tuples as well as lists containing tuples and tuples containing lists are matched recursively, so even this data object would match itself:
$[(1,2),(2,4),(3,9)]$
Things get more interesting, though, when a pattern contains variables. For instance,
$[(1, x)]$
would match any list containing a 2-tuple with a 1 in the first slot of the tuple. In addition it would bind the x in the pattern to the value in the corresponding data object, so matching
$[(1, x)]$ against $[(1,23)]$
would bind x to 23 .
Patterns may also contain constructors, like :: In an expression, :: adds a new element to the front of a list, but in a pattern it deconstructs a list, so matching
$(1, x):: t$ against $[(1,23),(2,34),(3,45)]$
would bind x to 23 and t to $[(2,34),(3,45)]$.
Patterns containing the :: constructor are frequently put in parentheses for greater clarity, but this is not a syntactic necessity.
When the identifier _ appears in a pattern, it matches any data object, just like a variable, but no value is bound. For instance, in the length function, which computes the number of elements of a list, we are not interested in the values of the individual list elements, so we use _ instead of a variable:

$$
\begin{aligned}
& \text { fun length }[]=0 \\
& \qquad \mid\left(_:: t\right)=1+\text { len } t
\end{aligned}
$$

The complete pattern matching algorithm can be found in the mLite Reference (pg 32).

Syntax and Informal Semantics

mLite expressions are based upon function application and infix operators. The usual operators exist:

```
x+y;x-y; x*y;x/y;x div y; x rem y;
x=y;x<y;x<>y;x<=y;x>=y;\cdots
```

There are also operators for "consing" an element to a list (: :) and for appending lists and strings (@).

Many operators are polymorphic, like @. Other examples include the comparison operators ($=,<,<>$, etc), which can be used to compare not only numbers, but also characters and strings.

There are case-insensitive counterparts to the comparison operators that begin with a tilde (${ }^{(}$). For example, $a^{\sim}=b$ tests whether the strings or characters a and b are the same after folding their case. When applied to numbers, there is no difference between case-sensitive and case-insensitive operators, e.g. $x=y$ is equal to $x^{\sim}=y$, if both x and y are numeric.

Function Application

Function application is denoted by juxtaposition and associates to the left. E.g. the expression $f x y$ is the same as $(f x) y$. It first applies f to x and the result of $f x$ to y.

This notation is particularly useful in combination with higher-order functions. For instance, map is a function of a function f to a function which maps f over its argument. So:
map $(f n x=x * x) \rightarrow$ fn a
map $(f n x=x * x)[1,2,3] \rightarrow[1,4,9]$
($a \rightarrow b$ means " a maps to b " or " a evaluates to b ".)
Parentheses can be used to override the precedence and associativity of all operators and function application. See the mLite Reference for a list of all predefined operators (pg 32) and functions (pg 39).

Alternatively, the apply (') operator can be used to change the associativity of function application. It is a low-precedence operator that applies its left-hand side to its right-hand side, so
$f^{\prime} g^{\prime} x * y$
would be equal to $f(g(x * y))$. This is the same as Haskell's "dollar" operator.

The $f n$ keyword introduces an anonymous function, just like "lambda" in Scheme. Functions defined with $f n$ may have multiple patterns, just like functions defined with fun:
fn false $=$ true $I_{-}=$false
Curried functions can be created by putting multiple patterns between the $f n$ keyword and the $=$ operator introducing the function body. For instance,
$f n a b c=a+b+c$
is a shorthand notation for
$f n a=f n b=f n c=a+b+c$
This works even in fun declarations:
fun $f a b c=a+b+c$

Conditional Evaluation

The if syntax is used to evaluate expressions conditionally:
fun gcd $(a, b)=$ if $b=0$ then

$$
\begin{aligned}
& a \\
& \text { else if } a=0 \text { then } \\
& b \\
& \text { else if } a<b \text { then } \\
& \quad g c d(a, b \bmod a) \\
& \text { else } \\
& \quad \operatorname{gcd}(b, a \bmod b)
\end{aligned}
$$

Note, though, that it is often more intuitive to replace if by pattern matching wherever possible:
fun $\operatorname{gcd}(a, 0)=a$

$$
I(0, b)=b
$$

$$
\text { I }(a, b)=\text { if } a<b \text { then }
$$

$$
\operatorname{gcd}(a, b \bmod a)
$$

else
$\operatorname{gcd}(b, a \bmod b)$
The or and also operators implement short-circuit logic operations:

```
true or "x" }->\mathrm{ true
false or " }x\mathrm{ " }->\mathrm{ " " "
true also " }x\mathrm{ " }->\mathrm{ " }x\mathrm{ "
false also " }x\mathrm{ " }->\mathrm{ false
```

Because of the short-circuit nature of these operators, the following expressions are save:
true or 1 div 0
false also 1 div 0
When the operators are chained, they associate to the left and also binds stronger than or.

The case syntax is merely a thin coating of syntactic sugar on top of $f n$:
case x of pattern $=$ expression $\mid \ldots$
is merely an alternative form of the function application
(fn pattern $=$ expression $\mid \ldots$...) x
It moves the argument to the beginning of the expression, which can increase readability in some cases.

Guarded Patterns

mLite extends the ML-style pattern matching mechanism by introducing implicit and explicit guards. A guard is an expression that is part of a pattern rather than a function body. It is evaluates after matching a pattern, but before evaluating the associated body. The body is only evaluated, if the guard evaluates to a "true" (i.e. non-false) value. Otherwise the match fails and the next pattern is tried.

This is a version of the $g c d$ function using a guard:
fun gcd $(a, 0)=a$

$$
I(0, b)=b
$$

I (a, b) where $a<b$
$=\operatorname{gcd}(a, b \bmod a)$
$1(a, b)=\operatorname{gcd}(b, a \bmod b)$
The where keyword introduces the guard $a<b$. So the first pattern (a, b) matches only if $a<b$. The second (a, b), without any guard, matches if the first one did not match.

When a guard deals only with a single variable, it can be placed in the pattern itself. This is called in implicit guard. Implicit guards often allow to express functions in a more natural way. For example:

```
\(\operatorname{sgn} x<0=\sim_{1}^{\sim}\)
    | \(x>0=1\)
    \(I_{-}=0\)
```

instead of
$\operatorname{sgn} x$ where $x<0={ }^{\sim} 1$
| x where $x>0=1$
$I_{-}=0$
Note: because = is also used to introduce function bodies, the guard expression has to be parenthesized when using this operator, as in
fn $(x \bmod 2=0)=\ldots$
or
fn (a, b) where $(a=b)=\ldots$
Even function application has to appear in parentheses in guard expressions to distinguish it from currying. For instance:

$$
f n f x=\ldots \text { equals } \quad f n f=f n x=\ldots
$$

but

$$
f n(f x)=\ldots \text { equals } f n x \text { where }(f x)=\ldots
$$

Parentheses can be omitted when an equal operator or function application appears inside of a list or tuple.

Multiple implicit guards can be used in the same tuple or list:
$f n[x<0, y>0]=\ldots$
would be equal to
$f n[x, y]$ where $(x<0$ also $y>0)=\ldots$
Each guard evaluates inside of the lexical environment of the function containing it, so functions can close over identifiers used in guards. The following filter function is a curried version of the extract function in the initial example (pg 2):

This function works, because $f 2$ closes over f, and $f x$ is evaluated inside of the environment of $f 2$.

```
fun filter \(f=\)
    let fun \(f 2([], r)=r e v r\)
    I \((f x:: x s, r)=f 2(x s, x:: r)\)
    I \((x:: x s, r)=f 2(x s, r)\)
    in \(f n a=f 2(a\), []\()\)
    end
```


Exception Handling

The declaration
exception :foo
creates a new exception named :foo.
Exceptions are technically constructors, so their names must begin with a colon, just like : :

The raise keyword raises an exception, i.e. it notifies the program that something interesting happened. When there is no handler for the given exception, the program reacts to the notification by terminating and printing a message. So the expression
raise :foo
will just terminate program execution.
Exceptions are frequently used to indicate unusual conditions during program execution. For instance, we might expect a list of single-digit numbers in the sum function. We catch the case of a non-digit by raising the :not_a_digit exception.
exception :not_a_digit

$$
\begin{aligned}
\text { fun sum } & {[]=0 } \\
& \left.\mid(x>9 \text { or } x<0):: _\right)=\text {raise }: \text { not_a_digit } \\
& \mid(x:: t)=x+\text { sum } t
\end{aligned}
$$

An exception handler is installed with the handle operator. An exception handler is an ordinary function with exception names as patterns. It will handle all exceptions listed as patterns, so the handler in
(raise :foo) handle :foo = "caught!"
will return the value "caught!".
An exception handler offers a way to provide a non-local exit and a default value for a failed computation at the same time. It can be thought of as a "jump" from the raise to the handler. For instance, we can exit from sum without performing all pending + operations caused by recursion:
sum $[1,2,3,99,4,5]$ handle :not_a_digit = false
Exception handling can also be used to implement backtracking. Exploring why the following program generates the correct solution change $(16,[5,2]) \rightarrow[5,5,2,2,2]$
is left as an exercise to the reader.

```
exception :out_of_coins
fun change (0,_) = []
    | (_,[]) = raise :out_of_coins
    | (amount, coin :: coins) =
        if coin > amount then
    change (amount, coins)
        else
            coin :: change (amount - coin, coin :: coins)
            handle :out_of_coins = change (amount,coins)
```


Input and Output

There are the usual functions for reading single characters (readc), reading and writing lines of text (readln, println), as well as for single-character look-ahead (peekc).

The print and println functions (which differ only in the point that println emits a final newline sequence) can be used to write any type of data object. The printer will use a human-readable representation for the object. These functions are similar to Scheme's "display" procedure.

New I/O streams are created by the instream and outstream functions and closed by close. The garbage collector will automatically close unused streams.

The << ("receive output") and >> ("send input") operators are used to redirect the input/output of the I/O functions to user-created streams.

The following program writes "Hello, World!" to the file "hello.txt": outstream "hello.txt" << println "Hello, World!"

The << operator makes the stream on its left-hand side receive the output of the expression to its right. The \gg operator passes input from the source to its left to the expression on its right.

The following expression re-reads the text written above:
instream "hello.txt" > readln ()
The sequence (;) operator orders the effects of I/O expressions (any expressions, in fact). It first evaluates the expression to its left and then the expression to its right. It associates to the left, so chains of ; operators are equal to Scheme's "begin".

The following sequence opens a file, writes to it, and closes it:
val $f=$ outstream "pi"; $f \ll$ println'355/113; close f

Declaration Syntax and Semantics

val pattern $=$ expression
The val declaration matches one pattern against one expression and binds the variables in the pattern to the corresponding components of the expression. Here are some examples (; ; introduces a comment to the end of line):
val $x=1 \quad ;$; bind x to 1
val $(x, y)=(1,2) \quad ;$; bind x to 1 and y to 2
val $(1,[x], 3)=(1,[2], 3) \quad ;$; bind x to 2
When the pattern does not match the expression, an error is reported.
val $p_{1}=x_{1}$ [and $p_{2}=x_{2} \cdots$]
Multiple bindings can be established in parallel by chaining them together with and (the brackets indicate an optional part here).

Parallel bindings will be established by first computing all expressions and then binding the variables. So the following declaration would in fact swap the values of x and y :
val $x=y$ and $y=x$
BTW, variables inside of a single pattern are also bound in parallel, so this version would also swap the values of x and y :
$\operatorname{val}(x, y)=(y, x)$
For sequential bindings, the sequence operator ; is used:
val $x=1 ;$ val $y=x+1 ;$ val $z=y+1$
Function declarations have been used throughout this text without ever explaining them in detail.
fun id $p_{1} p_{1}\left[\right.$ where $\left.x_{g}\right]=x_{1} \mid \cdots$ [and fun id $_{2} \cdots$]
fun id ${ }_{1} p_{1} \cdots$ [where x_{g}] $=x$ [and fun id ${ }_{2} \cdots$]
The declaration fun id $p=x$ for any pattern p and expression x is almost the same as the declaration val id $=f n p=x$, i.e. it binds an identifier to a function.

The only difference is that local functions defined with fun may be recursive, while local functions defined with val may not. At the top level of a program, there is no difference between these declarations.

Functions declared by fun can be curried by using shorthand notations like

$$
\text { fun add } a b=a+b
$$

instead of

$$
\text { fun } a d d a=f n b=a+b
$$

Note, however, that currying cannot be combined with alternative patterns, so the typical ML-style, where multiple cases are used with curried patterns, cannot be replicated in mLite.

Like most other declarations, multiple instances of fun may be chained together with and. However, the combination of and fun is only useful when defining local mutually recursive functions. See let, below, for an example.

Each pattern of a function may have an associated guard x_{g} (or an implicit guard). In this case, the pattern matches only, if the guard expression delivers a "true" value.
local ldecl $l_{1}\left[;\right.$ ldecl $\left._{2} \cdots\right]$ in decl $_{1}\left[;\right.$ decl $\left._{2} \cdots\right]$ end
The local construct evaluates the declarations $\operatorname{ldecl}_{1} \ldots$ and with the bindings established by these declarations in effect, it evaluates decl $_{1} \cdots$. After evaluating the decl's, the ldecl bindings are removed, but the decl's stay in effect.
local is used to hide local declarations from the top level. For instance, the revlist function, which reverses a list, could be implemented as follows:
local
fun $\operatorname{rev}^{\prime}([], b)=b$
$\mid(h:: t, b)=\operatorname{rev}^{\prime}(t, h:: b)$
in
fun revlist $a=\operatorname{rev}^{\prime}(a,[])$
end
Here the rev' function, which uses the accumulator b to reverse the list a in linear time, is hidden from the outer context.

Only fun and val bindings may be used in local declarations.
let ldecl $_{1}\left[;\right.$ ldecl $\left._{2} \cdots\right]$ in expr $_{1}\left[\right.$; expr $\left._{2} \cdots\right]$ end
let is like local, but instead of declaring bindings in its body (the part between in and end), it evaluates expressions. Also, let is a valid factor in expressions, which local is not. For instance,

```
val x = let fun e 0=1
    | x =o(x-1)
    and o 0=0
    | x =e(x-1)
    in
    map e [1, 2, 3, 4,5]
    end
```

would bind $x[0,1,0,1,0]$. e maps even numbers to 1 and odd numbers to $0 . e$ and o are local and mutually recursive, which is why they must be declared with fun ... and ...

Operator Declarations

Operators are in fact functions in mLite, which can easily be demonstrated as follows:
$+(*(1,2), *(3,4)) \rightarrow 24$
(Make sure to leave a blank between "(" and "*", because "(*" would begin a block comment.)
However, not all functions are operators:

```
max(5,7) -> 7
    5max 7 -> error
```

The infix and infixr keywords are used to declare functions as infix operators. The nonfix keyword removes an operator declaration. Note that these declarations actually change the syntax of the mLite language, so they should be used with care.

The mLite system maintains an internal parse table that contains the precedence and associativity values of all operators. This table controls the part of the mLite parser that analyzes infix expressions. Operator declarations modify this table. The initial table can be found in the mLite Reference (pg 32).
infix $i d_{1}\{<,=,>\} i d_{2}$
infixr id $d_{1}\{<,=,>\}$ id d_{2}
An infix declaration adds the identifier $i d_{1}$ to the parse table. The precedence will be either less than, equal to, or greater than the precedence of $i d_{2}$, depending on the operator used in between. E.g.

> infix max = +
would assign the precedence of the + operator to max. The new operator associates to the left. After the above declaration, the expression

$$
a+b \max c+d
$$

would parse as

$$
((a+b) \max c)+d
$$

An infixr declaration works in exactly the same way, but makes $i d_{1}$ associate to the right.
nonfix id $[, \cdots]$
A nonfix declaration removes the given identifiers from the parse table. After removing an identifier from the table, it no longer works as an infix operator.

While nonfix can theoretically be applied to predefined operators, such as + and @ , doing so is not recommended.
op f
Any infix operator can be used as a function by prefixing it with the keyword $o p$. For instance:
$o p+(5,7)$
or
fold $(o p+, 0)[1,2,3,4,5]$
Note that the op keyword is merely a hint for the parser and can often be omitted.

Algebraic Types

type : id = constructor $\mid \ldots$
The type declaration creates a new data type called :id, which may be constructed and deconstructed by any of the constructors following the equal sign.

The following declaration defines a "list" type, although this is actually redundant, because mLite already has a primitive list type:
type $: l i s t=$:nil \mid :cons $(x,: l i s t)$
It means, "a :list is either :nil or a :cons of some object and another :list". This is the archetypal definition of the list, as it can be found in pretty much every introduction-level computer science textbook.

A new :list can then be created by :cons:

```
:cons (1,:cons (2,:cons (3, :nil)))
```

and functions may use the :cons constructor in patterns in order to destructure:lists:
fun length :nil $=0$

$$
1: \text { cons }\left(_, t\right)=1+\text { length } t
$$

Of course, type constructors can be infix operators, so after declaring

```
infixr :cons = ::
```

the following expression can be used to create a list:
1 :cons 2 :cons 3 :cons :nil
and length can be written like this:
fun length :nil $=0$

$$
\mid\left(_ \text {:cons } t\right)=1+\text { length } t
$$

The following type defines a binary tree:
type :tree $=:$ leaf $(x) \mid$:node (:tree, :tree)
So a :tree is either a :leaf of a value x or a :node of two :tree's. Here is a sample tree:

```
:node
    (:node
        (:leaf 1,
        :leaf 2),
        :node
        (:node
            (:leaf 3,
                :leaf 4),
            :node
                (:leaf 5,
                :leaf 6)))
```

And this is a function computing the depth (the longest path from the root to a leaf) of a tree:

```
fun depth :leaf(_) = 1
    I :node (l,r)=1+max (depth l, depth r)
```

Of course, algebraic types can be combined:
type : vtree $=:$ leaf $(x) \mid$:node (:tlist) type :tlist = :nil | :tcons (:vtree, :tlist)

A :vtree is either a :leaf of a value or a :node of a :tlist (tree list), and a :tlist is either :nil or a :tcons of a :vtree and a :tlist. The types are mutually recursive and together define a variadic tree.
exception :id [and \cdots]
An exception declaration is technically equal to a type declaration of the form
type :id = :id

It defines a constant constructor, i.e. a constructor that evaluates to itself. However, the exception declaration should be used for clarity.

The Lite Abstract Machine

mLite compiles internally to a Scheme-based domain-specific language (DSL) that is easily implemented on top of a Scheme system by means of functions and macros, allowing an mLite environment to make use of a mature Scheme system as its backend.

The Lite Abstract Machine (LAM) language differs from ordinary Scheme in the following aspects.

- Lambda abstraction is replaced by a pattern matching function abstraction.
- There are additional special forms to support algebraic types and exceptions.
- There is a new "tuple" data type.
- All non-variadic primitive functions are unary, using tuples and pattern matching to receive multiple arguments.
- Some special forms and most of the built-in procedures have been removed or renamed in order to make LAM more similar to the mLite language.
- File input/output works in a different way.

LAM Syntax

Most LAM data objects look exactly like Scheme data objects, with the following exceptions:

- Truth values are represented by the identifiers true and false.
- Char literals are represented by \#" c " where c may be a single character or space or newline.
- Lists use square brackets instead of parentheses and : : instead of the dot (.).
- There is no external representation for vectors. Vectors are created by the newvec function.

There is a comprehensive list of mLite/LAM data objects in the mLite Reference (pg 31).

In the following summary, x denotes any type. In syntactical forms ("special forms"), x denotes an unevaluated expression and $\operatorname{eval}(x)$ denotes its normal form, i.e. its value after evaluation.

A summary of all other type designators can also be found in the mLite Reference.

Scheme-Like Syntax

(quote x) $\rightarrow x$
Return the value x.
(begin $\left.x_{1} \cdots x_{n}\right) \rightarrow \operatorname{eval}\left(x_{n}\right)$
Evaluate each x_{i} in sequence, return the value of x_{n}.
(if $\left.x_{1} x_{2} x_{3}\right) \rightarrow \operatorname{eval}\left(x_{2} \mid x_{3}\right)$
If $\operatorname{eval}\left(x_{1}\right)$ is not false, evaluate to $\operatorname{eval}\left(x_{2}\right)$, else evaluate to $\operatorname{eval}\left(x_{3}\right)$. There is no two-argument variant of if.
(or $x_{1} \cdots$) $\rightarrow \operatorname{eval}\left(x_{i}\right)$
Return the value of the first x_{i} that does not evaluate to false, else return false.
(also $\left.x_{1} \cdots x_{n}\right) \rightarrow \operatorname{eval}\left(x_{i}\right)$
Evaluate to the value of the first x_{i} that evaluates to false. Evaluate to x_{n}, if all prior x_{i} 's evaluated to a non-false value. This is like Scheme's "and". It is called also, because and is reserved for chaining declarations.
(set! id x) \rightarrow ()
Change the value bound to id to $\operatorname{eval}(x)$. Used to implement recursive bindings.
(Note: the name set! does not have to be a valid mLite identifier, because it is only used internally.)

Non-Scheme Syntax

$\left(f n\left(p_{1} x_{1}\right) \cdots\right) \rightarrow f$
Create a new function of patterns $p_{1} \cdots$ to expressions $x_{1} \cdots$. See function application, below, for further details.
$\left(\left(f n\left(p_{1} x_{1}\right) \cdots\right) x_{a}\right) \rightarrow \operatorname{eval}\left(x_{1}\right)$
Attempt to match the argument expression x_{a} against the pattern p_{1}, thereby binding variables in the pattern to matching values in the argument. When the match succeeds, evaluate x_{1} with the bindings in effect and return $\operatorname{eval}\left(x_{1}\right)$.
When x_{a} does not match p_{1}, try the other patterns p_{i}, until a pattern matches or no more patterns can be found. A function application running out of patterns is an error.
The exact pattern matching algorithm is be explained in the section on the mLite language itself and, more formally, in the mLite Reference (pg 32).
(letrec $\left.\left(\left(i d_{1}\left(p_{1} x_{1}\right) \cdots\right) \cdots\right) x_{b 1} \cdots x_{b n}\right) \rightarrow \operatorname{eval}\left(x_{b n}\right)$
Bind each identifier $i d_{i}$ to the corresponding function ($f n\left(p_{i} x_{i}\right) \cdots$). With those bindings in effect, evaluate $x_{b 1} \cdots x_{b n}$ and finally return $x_{b n}$.
(\%raise :id) \rightarrow undefined
Raise the exception :id. This operator never returns. Exception handling is discussed in the section on the mLite language (pg 9).
(define id x) \rightarrow ()
Create the new variable id and bind it to the value $\operatorname{eval}(x)$. The new binding will be always added to the top level environment, so the binding created by the form

$$
((f n(x(\text { define foo } x))) \text { "bar") }
$$

will persist even after the function returns. In other words, define binds variables to values globally, no matter what context it appears in.
(define_type :id constructor \cdots) \rightarrow ()
Create a new algebraic data type named :id. Each constructor is either a name beginning with a colon (a constructor name) or a tuple containing a constructor name in the first slot. Atomic constructors create atomic objects, tuples create constructor functions.

For instance, the following data type declaration creates the typical Lisp list type:
(define_type :list :nil (:cons x :list))
Algebraic types are explained in detail in the introduction to the mLite language (pg 15).

```
(> instream x) }->\operatorname{eval(x)
```

Evaluate x with program input redirected to the given instream, where x is typically an expression whose effect is to read input from a stream. Return $\operatorname{eval}(x)$.
$(\ll$ outstream $x) \rightarrow \operatorname{eval}(x)$
Evaluate x with program output redirected to the given outstream where x is typically an expression whose effect is to write output to a stream. Return $\operatorname{eval}(x)$.

Scheme-Like Functions

The following functions are almost identical to their Scheme counterparts:

$$
*+-/ \ll==\gg=\text { abs call/cc max min not }
$$

They implement multiplication, addition, subtraction, the usual comparison operations, magnitude (abs), call-with-currentcontinuation, the minimum and maximum of two numbers, and the logical "not".
Unlike their Scheme counterparts, all of these functions are unary, though, and multiple values are passed to them via tuples so, for instance, two numbers x and y are added by the form

$$
(+(\text { tuple } x y))
$$

Also, none of these functions are variadic. The arithmetic and comparison functions (except for $a b s$) all expect 2 -tuples as arguments. call/cc expects a single value. The not function is type-agnostic, as in Scheme.

The domain of the comparison operators has been extended, so they can be applied to chars and strings in addition to numbers.

Renamed Functions

Some functions have been renamed to make them fit better in the mLite language. A full map of these functions can be found in the appendix (pg 56).

mLite Functions

The following identifiers denote LAM-level mLite functions:

$$
\begin{aligned}
& : \text { @ }<>\sim<\sim<=\sim<>\sim \sim \sim \gg=\text { close } \\
& \text { len println readln ref rev set setvec sub } \sim
\end{aligned}
$$

Some of these functions are explained in detail in the introduction to the mLite language. A full list can be found in the mLite Reference.

The following identifiers denote functions that are used internally in code compiled from mLite programs:
(list $x_{1} \cdots$) $\rightarrow L$
Create a list.
(tuple $x_{1} \cdots x_{k}$) $\rightarrow T_{k}$
Create a k-tuple.
(\%register $k f$) \rightarrow ()
Register exception handler f with exit point k (k is a continuation).
(\%unregister x) $\rightarrow x$
Unregister the most recently registered exception handler and return x. This is an identity function with the effect of unregistering a handler.
(\%typecheck :id $x L$) $\rightarrow x$
Check whether x is contained in L, where L is a list of all patterns representing the type :id. For instance, given the definition
(define_type :list :nil (:cons x :list))
the :cons constructor would use \%typecheck to make sure its second argument is of the form :nil or (:cons $x y$).

Qonnoilino nomite to A AM

This chapter defines the semantics of the mLite language in terms of the Lite Abstract Machine.

Data Objects

Atomic data objects and identifiers compile to themselves; $a \rightarrow b$ means " a compiles to b " in this chapter.

$$
\begin{aligned}
{[] } & \rightarrow[] \\
() & \rightarrow() \\
\text { bool } & \rightarrow \text { bool } \\
\text { int } & \rightarrow \text { int } \\
\text { real } & \rightarrow \text { real } \\
\text { char } & \rightarrow \text { char } \\
\text { str } & \rightarrow \text { str } \\
\text { id } & \rightarrow \text { id } \\
\text { op id } & \rightarrow \text { id }
\end{aligned}
$$

Lists and tuples:
$\left[x_{1}, \cdots\right] \rightarrow\left(\right.$ list $\left.x_{1} \cdots\right)$
$\left(x_{1}, x_{2}, \cdots\right) \rightarrow\left(\right.$ tuple $\left.x_{1} x_{2} \cdots\right)$
$\# \operatorname{int}\left(x_{1}, x_{2}, \cdots\right) \rightarrow\left(\right.$ ref (tuple $\left.x_{1} x_{2} \ldots\right)$ int $)$
Algebraic types:
:type \rightarrow :type
:type $\left(x_{1}, \cdots\right) \rightarrow$ (: type $\left.x_{1} \cdots\right)$

Functions and Application

$$
\begin{aligned}
& f n p=x \mid \cdots \rightarrow(f n(p x) \cdots) \\
& f n p_{1} p_{2}=x \rightarrow\left(f n\left(p_{1}\left(f n\left(p_{2} x\right)\right)\right)\right) \\
& (f n p=x \mid \cdots) x_{a} \rightarrow\left((f n(p x) \cdots) x_{a}\right) \\
& f x \rightarrow(f x) \\
& f g x \rightarrow((f g) x)
\end{aligned}
$$

$f(g x) \rightarrow(f(g x))$
f ' $g x \rightarrow(f(g x))$
R denotes an infix operator and R_{n} an infix operator of precedence n, where higher values indicate stronger binding. R_{L} and R_{R} indicate left- and right associative operators, respectively (with equal precedence). Then:
$x_{1} R x_{2}=R\left(x_{1}, x_{2}\right)$, so $x_{1} R x_{2} \rightarrow\left(R\left(\right.\right.$ tuple $\left.\left.x_{1} x_{2}\right)\right)$
Furthermore:
$x R_{L} y R_{L} z \rightarrow\left(R_{L}\left(\right.\right.$ tuple $\left(R_{L}(\right.$ tuple $\left.\left.\left.x y)\right) z\right)\right)$
$x R_{R} y R_{R} z \rightarrow\left(R_{R}\left(\right.\right.$ tuple $x\left(R_{R}(\right.$ tuple $\left.\left.\left.y z)\right)\right)\right)$
$x R_{2}$ y $R_{1} z \rightarrow\left(R_{1}\left(\right.\right.$ tuple $\left(R_{2}(\right.$ tuple $\left.\left.\left.x y)\right) z\right)\right)$
$x R_{1}$ y $R_{2} z \rightarrow\left(R_{1}\left(\right.\right.$ tuple $x\left(R_{2}(\right.$ tuple $\left.\left.\left.y z)\right)\right)\right)$
$(x) \rightarrow x$
$\left(x R_{1} y\right) R_{2} z \rightarrow\left(R_{2}\left(\right.\right.$ tuple $\left(R_{1}(\right.$ tuple $\left.\left.\left.x y)\right) z\right)\right)$
$x R_{2}\left(y R_{1} z\right) \rightarrow\left(R_{2}\left(\right.\right.$ tuple $x\left(R_{1}(\right.$ tuple $\left.\left.\left.y z)\right)\right)\right)$

Expressions

Sequences:

x_{1} or x_{2} or $\cdots \rightarrow\left(\right.$ or $\left.x_{1} x_{2} \cdots\right)$
x_{1} also x_{2} also $\cdots \rightarrow\left(\right.$ also $\left.x_{1} x_{2} \cdots\right)$
$x_{1} ; x_{2} ; \cdots \rightarrow\left(\right.$ begin $\left.x_{1} x_{2} \cdots\right)$
Conditional evaluation:
if x_{1} then x_{2} else $x_{3} \rightarrow$ (if $x_{1} x_{2} x_{3}$)
case x_{0} of $p_{1}=x_{1} \mid \cdots \rightarrow\left(\left(f n\left(p_{1} x_{1}\right) \cdots\right) x_{0}\right)$
I/O redirection:
$x_{1} \ll x_{2} \rightarrow\left(\ll x_{1} x_{2}\right)$
$x_{1} \gg x_{2} \rightarrow\left(\gg x_{1} x_{2}\right)$

Exceptions

x_{0} handle $: \operatorname{exn}_{1}=x_{1} \mid \cdots$
$\rightarrow\left(\right.$ call/cc $\left(f n\left(k\left(\% r e g i s t e r k\left(f n\left(: \operatorname{exn}_{1} x_{1}\right) \cdots\right)\right)\right.\right.$
(\%unregister $\left.x_{0}\right)$)))
raise :exn \rightarrow (\%raise :exn)
Local values:
let val $p_{1}=x_{1}$ in x_{2} end $\rightarrow\left(\left(f n\left(p_{1} x_{2}\right)\right) x_{1}\right)$
let val $p_{1}=x_{1}$ and $p_{2}=x_{2}$ in x_{3} end
$\rightarrow\left(\left(f n\left(\left(p_{1} p_{2}\right) x_{3}\right)\right) x_{1} x_{2}\right)$
Note that:
$\left(\left(f n\left(\left(p_{1} p_{2} \cdots\right) x_{b}\right)\right) x_{1} x_{2} \ldots\right)$
$=\left(\left(f n\left(\left(p_{1} p_{2} \cdots\right) x_{b}\right)\right)\left(\right.\right.$ tuple $\left.\left.x_{1} x_{2} \ldots\right)\right)$
let val $p_{1}=x_{1} ;$ val $p_{2}=x_{2}$ in x_{3} end
$\rightarrow\left(\left(f n\left(p_{1}\left(\left(f n\left(p_{2} x_{3}\right)\right) x_{2}\right)\right)\right) x_{1}\right)$
let val $p_{1}=x_{1}$ in $x_{2} ; x_{3}$ end $\rightarrow\left(\left(\operatorname{fn}\left(p_{1}\left(\right.\right.\right.\right.$ begin $\left.\left.\left.\left.x_{2} x_{3}\right)\right)\right) x_{1}\right)$
Local functions:
let fun $f_{1} p_{1}=x_{1}$ in x_{2} end $\rightarrow\left(\right.$ letrec $\left.\left(\left(f_{1}\left(p_{1} x_{1}\right)\right)\right) x_{2}\right)$
let fun $f_{1} p_{1}=x_{1}$ and $f_{2} p_{2}=x_{2}$ in x_{3} end $\rightarrow\left(\operatorname{letrec}\left(\left(f_{1}\left(p_{1} x_{1}\right)\right)\left(f_{2}\left(p_{2} x_{2}\right)\right)\right) x_{3}\right)$
let fun $f_{1} p_{1}=x_{1} ;$ fun $f_{2} p_{2}=x_{2}$ in x_{3} end $\rightarrow\left(\operatorname{letrec}\left(\left(f_{1}\left(p_{1} x_{1}\right)\right)\right)\left(\operatorname{letrec}\left(\left(f_{2}\left(p_{2} x_{2}\right)\right)\right) x_{3}\right)\right)$
let fun $f_{1} p_{1}=x_{1}$ in $x_{2} ; x_{3}$ end $\rightarrow\left(\right.$ letrec $\left(\left(f_{1}\left(p_{1} x_{1}\right)\right)\right)\left(\right.$ begin $\left.\left.x_{2} x_{3}\right)\right)$

Declarations

Values:
val $v=x \rightarrow$ (define $v x)$
val $p=x \rightarrow\left(\left(f n\left(p\left(\right.\right.\right.\right.$ define $\left.\left.\left.\left.v_{1} v_{1}\right) \cdots\right)\right) x\right)$
where each v_{i} is a variable of the pattern p.

For example:

```
val \((x, y)=(1,2)\)
    \(\rightarrow((f n((x y)\) (define \(x \quad x)\) (define \(y\) y))) (tuple 12\())\)
```

Because define binds variables at the top level, the construct (define $v v$) copies the binding of the identifier v to the top-level (global) environment.
val $p_{1}=x_{1}$ and $x_{2}=p_{2}$
$\rightarrow\left(\left(f n\left(\left(p_{1} p_{2}\right)\left(\right.\right.\right.\right.$ define $\left.\left.\left.\left.v_{1} v_{2}\right) \cdots\right)\right) x_{1} x_{2}\right)$
Functions:

```
fun id \(p_{1}=x_{1} \mid \cdots \rightarrow\left(\right.\) define id \(\left.\left(f n\left(p_{1} x_{1}\right) \cdots\right)\right)\)
fun id \(p_{1} p_{2}=x \rightarrow\left(\right.\) define id \(\left.\left(f n\left(p_{1}\left(f n\left(p_{2} x\right)\right)\right)\right)\right)\)
fun id \(d_{1} p_{1}=x_{1}\) and \(i d_{2} p_{2}=x_{2}\)
    \(\rightarrow\left(\right.\) letrec \(\left(\left(i d_{1}\left(p_{1} x_{1}\right)\right)\left(i d_{2}\left(p_{2} x_{2}\right)\right)\right)\)
    (define id \({ }_{1} i d_{1}\) )
    (define \(i d_{2} i d_{2}\) ))
```

Guarded functions:
fun id p where $x_{g}=x$
\rightarrow (define id (fn ((GUARD p:: $\left.\left.\left.x_{g}\right) x\right)\right)$)
fun id $x_{i g}=x$
\rightarrow (define id $\left(\right.$ fn $\left.\left.\left(\left(G U A R D ~ P\left(\rho x_{i g}\right):: G\left(\rho x_{i g}\right)\right) x\right)\right)\right)$
Here $x_{i g}$ denotes an implicit guard. GUARD is a primitive type of the Lite Abstract Machine. See the section on Implicit Guard Patterns (pg 33) for definitions of the ρ, P, and G functions.

Example:
fun id $f x_{1}=x_{2} \rightarrow\left(\right.$ define id $\left.\left(f n\left(\left(G U A R D x_{1}::\left(f x_{1}\right)\right) x_{2}\right)\right)\right)$
Type declarations:
type :id $=$ cons $_{1} \mid \cdots \rightarrow$ (define_type :id cons $_{1} \cdots$)
where each cons denotes a type constructor.

Exceptions:

exception :id \rightarrow (define_type :id :id)

Fixity declarations $(R \in\{<,=,>\})$:
infix id ${ }_{1} R$ id $d_{2}, \cdots \rightarrow()$
infixr id $d_{1} R$ id ${ }_{2}, \cdots \rightarrow()$
nonfix id, $\cdots \rightarrow$ ()
These declarations do not compile to any code, but modify the internal infix operator table.

Local Declarations

Local values:
local val $v_{1}=x$ in val $v_{2}=v_{1}$ end
$\rightarrow\left(\left(f n\left(v_{1}\left(\right.\right.\right.\right.$ define $\left.\left.\left.\left.v_{2} v_{1}\right)\right)\right) x\right)$
local val $v_{1}=x_{1}$ and $v_{2}=x_{2}$ in val $v_{3}=v_{2}$ end
$\rightarrow\left(\left(f n\left(\left(v_{1} v_{2}\right)\left(\right.\right.\right.\right.$ define $\left.\left.\left.\left.v_{3} v_{2}\right)\right)\right) x_{1} x_{2}\right)$
local val $v_{1}=x_{1} ;$ val $v_{2}=v_{1}$ in val $v_{3}=v_{2}$ end
$\rightarrow\left(\left(f n\left(v_{1}\left(\left(f n\left(v_{2}\left(\right.\right.\right.\right.\right.\right.\right.$ define $\left.\left.\left.\left.\left.\left.\left.v_{3} v_{2}\right)\right)\right) v_{1}\right)\right)\right) x_{1}\right)$
local val $v_{1}=x_{1}$ in val $v_{2}=v_{1}$ and $v_{3}=v_{1}$ end
$\rightarrow\left(\left(f n\left(v_{1}\left(\left(f n\left(\left(v_{2} v_{3}\right)\left(\right.\right.\right.\right.\right.\right.\right.$ define $\left.v_{2} v_{2}\right)\left(\right.$ define $\left.\left.\left.v_{3} v_{3}\right)\right)\right)$ $\left.\left.v_{1} v_{1}\right)\right)$)

$$
\left.x_{1}\right)
$$

local val $v_{1}=x_{1}$ in val $v_{2}=v_{1} ;$ val $v_{3}=v_{2}$ end
$\rightarrow\left(\left(f n\left(v_{1}\left(\right.\right.\right.\right.$ begin $\left(\right.$ define $\left.v_{2} v_{1}\right)\left(\right.$ define $\left.\left.\left.\left.\left.v_{3} v_{2}\right)\right)\right)\right) x_{1}\right)$
Local functions:
local fun f p $=x$ in fun g $=x$ end
$\rightarrow($ letrec $((f(p x)))$ (define $g(f n(p x))))$
local fun f p x and g $p=x$ in fun $h p=x$ end
$\rightarrow($ letrec $((f(p x))(g(p x)))($ define $h(f n(p x))))$
local fun $f p=x$; fun $g p=x$ in fun $h p=x$ end
$\rightarrow($ letrec $((f(p x)))$
(letrec $((g(p x)))$
(define $h(f n(p x))))$)

```
local fun \(f\) p \(=x\) in fun \(g\) \(=x\) and \(h p=x\) end
    \(\rightarrow\) (letrec \(((f(p x)))\)
    (letrec \(((g(p x)))(h(p x)))\)
        (define \(g g\) )
        (define \(h h\) )))
```

local fun f p $=x$ in fun g p $=x$ fun $h p=x$ end
\rightarrow (letrec $((f(p x)))$
(begin $($ define $g(f n(p x)))($ define $h(f n(p x)))))$

Derived Forms

The letrec and define_type forms are derived forms, i.e. they are composed of simpler LAM forms internally.
letrec translates to $f n$ and set!:
(letrec

```
((fl (pat1 exprl) (set! fl (fn (pat1 exprl)
        (pat2 expr2) (pat2 expr2))
        ...)
    (f2 (pat1 exprl)
        (pat2 expr2)
        ...))
    expr.\cdots)
                                    ...)
    (set! f2 (fn (pat1 expr1)
                                    (pat2 expr2)
                                    ...)))
                                    ((fn(() expr\cdots))))
                                    undefined
                                    undefined)
```

$\rightarrow \quad((f n)(f 1 f 2)$
define_type translates to a set of define's, the first one defining the type itself, the subsequent ones the constructors of the type:
(define_type :id constructor...)
$\rightarrow\left(\right.$ begin $\left(\right.$ define :id ${ }^{\prime}(:$ id constructor $\left.\cdots)\right)$
(define :id...) ...)

Atomic constructors:
:id \rightarrow (define :id ':id)
Parametric constructors (carrying a variable object):
(:id id) \rightarrow (define :id (fn (id (list ':id id))))

Parametric constructors (carrying a typed object):
(:id $\left.: i d_{2}\right)$
\rightarrow (define :id ${ }_{1}$ (fn (x (list ':id $\left(\%\right.$ typecheck :id $\left.\left.\left.\left.{ }_{1} x: i d_{2}\right)\right)\right)\right)$)
Example:
(define_type :list :nil (:cons x :list))
$\rightarrow\left(\right.$ begin $\left(\right.$ define :list ${ }^{\prime}(:$ list : nil (:cons x :list $\left.\left.)\right)\right)$
(define :nil ':nil)
(define :cons
(fn ((x list $\left.{ }_{1}\right)$
(list ':cons $x\left(\%\right.$ typecheck ':cons list ${ }_{1}:$ list $\left.\left.)\right)\right)$)))

mLite Reference

mLite/LAM Data Objects

Type	Examples	Designator
boolean	true; false	b
integer	$0 ; 123$	n
real	$0.0 ; 3.14 ; 1.23 e 6$	r
char	$\# x ; \#$ space	c
string	"hello"; ' \backslash '"'"	s
unit	()	()
tuple	(x, y, z)	T_{k}
list	$[x, y, z] ;[x::[y]] ;[]$	L
vector	newvec $(10, x)$	V
function	fn $x=x+1$	f
instream	instream " file"	$S I$
outstream	outstream " file"	$S O$
identifier	foo; $f^{\prime} ;=/=$	$i d$
constructor	:cons	$: i d$

Note: in LAM programs, there are no commas in lists and tuples, and function application is Scheme-like, e.g.:
(newvec (tuple $10 x$)) instead of newvec ($10, x$).
As in Scheme, the sequences " \backslash " and " \backslash " can be used to escape the corresponding characters inside of string literals. There are no other escape sequences.

The unit object () is used as an unspecific value. For example, it is passed to procedures not expecting any specific arguments and returned by procedures not returning any meaningful value.
T_{k} denotes a k-tuple, i.e. a tuple of k elements. There are no tuples with $k=1$, because these would just denote single values, i.e. $(x)=x$ for any value x. The 0 -tuple is equal to unit.

There are two groups of identifiers. One consists of letters, decimal digits, and the following special characters: underscore (_), apostrophe ('), colon (:). These identifiers must begin with a
non-digit character. They are case-sensitive.
The other group ("operator identifiers") consist of sequences of the following special characters:
! @ \$ \% ^ \& * - + = < > / ~

Predefined Infix Operators

Precedence	Operators	Associativity
high	o	right
	^	right
	* div mod rem /	left
	+ -	left
	: @	right
low		left

Pattern Matching Algorithm

- () matches ().
- true matches true and false matches false.
- a number x matches a number y, if $x=y$.
- a char c_{1} matches a char c_{2}, if $c_{1}=c_{2}$.
- a string s_{1} matches a string s_{2}, if $s_{1}=s_{2}$.
- the special pattern _ matches any object.
- an identifier id matches any object and binds id to that object.
- a list L_{1} matches a list L_{2}, if len $L_{1}=$ len L_{2} and each element a_{i} of L_{1} matches the corresponding element b_{i} of L_{2}.
- the pattern $h:: t$ matches a list of at least one element and binds the identifier h to the first element of the list and the identifier t to the rest of the list.
- a k-tuple $T_{k, 1}$ matches a k-tuple $T_{k, 2}$, if each $\# i T_{k, 1}$ matches $\# i T_{k, 2}$ for $0 \leq i<k$.
- a constant constructor :id matches itself.
- an exception :exn matches itself.
- a parametric constructor :id $\left(i d_{1}, \cdots\right)$ matches any object created by that constructor and binds any variables in the pattern to the corresponding values in the object.

Implicit Guard Patterns

Informally: an implicit guard is an expression inside of a pattern. Function application, infix operators, or, and also are allowed inside of implicit guard expressions. Guards using function application or $=$ operators must be parenthesized to distinguish them from currying and function bodies.
The function ρ converts each implicit guard pattern to a tuple (P, G) consisting of an (unguarded) pattern P and a guard expression $G . P t$ is the pattern component of the (P, G) tuple t, and $G t$ is its guard component. \varnothing means "no guard expression".

```
unit }->\mathrm{ (unit, Ø)
bool }->\mathrm{ (bool, Ø)
int }->\mathrm{ (int, Ø)
real }->(\mathrm{ real, Ø)
str }->(str,\varnothing
id }->(id,\varnothing
```

Function application is the combination (\cdot) of two identifiers, where the rightmost identifier is the pattern.
$f x \rightarrow(f, \varnothing) \cdot(x, \varnothing) \rightarrow(x, f x)$
Higher order application:
$f g x \rightarrow(g, f g) \cdot(x, \varnothing) \rightarrow(x,(f g) x)$
Function composition:
$f(g x) \rightarrow(f, \varnothing) \cdot(x, g x) \rightarrow(x, f(g x))$
More generally (f and x may be be any expression):
$\rho(f x) \rightarrow\left(P(\rho x), f^{\prime} x^{\prime}\right)$
where $f^{\prime}=G(\rho f)$, if $G(\rho f) \neq \varnothing$ else $f^{\prime}=P(\rho f)$.
and $x^{\prime}=G(\rho x)$, if $G(\rho x) \neq \varnothing$, else $x^{\prime}=P(\rho x)$.
Tuples:

$$
\begin{aligned}
& \left(a_{1}, a_{2}, \cdots\right) \\
& \quad \rightarrow\left(\left(P\left(\rho a_{1}\right), P\left(\rho a_{2}\right), \cdots\right), G\left(\rho a_{1}\right) \text { also } G\left(\rho a_{2}\right) \text { also } \cdots\right)
\end{aligned}
$$

I.e. a tuple is converted to a tuple with each guarded pattern replaced by the corresponding unguarded pattern. The guard of the tuple is the conjunction of all guards in the tuple.
Lists work analogously:
$\left[a_{1}, \cdots\right] \rightarrow\left(\left[P\left(\rho a_{1}\right), \cdots\right], G\left(\rho a_{1}\right)\right.$ also $\left.\cdots\right)$
The guard $G(\rho p)$ of an unguarded pattern p may be thought of as true, although an actual implementation would simply omit the guard in the conjunction.
Infix expressions: for each infix operator R,
id $R x \rightarrow(i d, R(i d, x))$
$x R$ id $\rightarrow(i d, R(x, i d))$
$i d_{1} R i d_{1} \rightarrow\left(i d_{1}, R\left(i d_{1}, i d_{1}\right)\right)$
Also note that:
$i d_{1} R$ id $_{2} \rightarrow$ error
That is, only one single identifier may be contained in an infix expression x, and that identifier will be the resulting unguarded pattern $P(\rho x)$. However, the single identifier may appear multiple times, e.g.:
$\rho(10<$ id also id $<20) \rightarrow(i d, 10<$ id also id $<20)$
The detailed conversion rules for infix expression are rather elaborate. For a complete formal description see [HOL14].

mLite Syntax Summary

Declarations

val $p=x$ and \ldots
Bind variables of pattern p to corresponding components of expression x. Expressions in bindings chained with and evaluate before binding any values.
fun id p [where $\left.x_{g}\right]=x \mid \cdots$ and \cdots
fun id $p \cdots\left[\right.$ where $\left.x_{g}\right]=x$ and \cdots
Bind each identifier id to the corresponding function

$$
f n p=x \mid \cdots
$$

Multiple patterns $p, q \cdots$ indicate currying, e.g.:

$$
\text { fn } p q \cdots=x \text { equals fn } p=\text { fn } q=\cdots x
$$

Note that multiple patterns (separated by I) cannot be combined with currying. Each function is either curried or has multiple cases.
Multiple fun declarations chained together with and may be mutually recursive, even in local (let, local) contexts.
The where keyword introduces an explicit guard expression. A pattern matches only if x_{g} evaluates to a non-false value.

Each pattern p may contain implicit guards; see the corresponding section in this reference (pg 33) for details.
type :id $=$ cons $\mid \ldots$
Define algebraic type :id as union of the subsequent constructors. Each constructor may be of the form :id, defining an atomic instance of the type, or of the form

$$
: i d(i d \cdots)
$$

where each id may be an (untyped) variable or a type name. A constructor containing a type name in a formal argument expects a value of the given type in the corresponding actual argument. E.g., the constructor :c defined in

$$
\text { type }: L=: N \mid: c(x,: L)
$$

would accept any type of argument in the place of x, but only values of the type : L in the second slot of its argument.
local $^{\text {ldecl }} l_{1,1} ; \cdots$ in ldecl $_{2,1} ; \cdots$ end
First evaluate the $l_{\text {decl }}^{1}$'s, giving a new environment E, then evaluate the $l_{\text {decl }}^{2}$'s in that environment, adding them to the top level environment. Eventually remove the environment E, but keep the bindings established by ldecl_{2}.
I.e.: define ldecl $_{2}$ in a local context containing ldecl $_{1}$, hiding the $l_{\text {decl }}^{1}$'s from the top level.

Each ldecl may be a val or a fun declaration.
infix id $d_{1}\{<,=,>\} i d_{2}, \cdots$
Add the identifier $i d_{1}$ to the internal operator precedence table as a left-associative operator. After adding the identifier to the table, it will be recognized as an infix operator, so $x i d_{1} y$ will map to $i d_{1}(x, y)$.
The less/equal/greater sign together with the second identifier $i d_{2}$ defines the precedence of the $i d_{1}$ operator:

$i d_{1}<i d_{2}$	id d_{1} has lower precedence than $i d_{2}$
$i d_{1}=i d_{2}$	$i d_{1}$ has the same precedence as $i d_{2}$
$i d_{1}>i d_{2}$	$i d_{1}$ has higher precedence than $i d_{2}$

infix itself does not define the operator, it merely makes it known to the mLite parser.
infixr id $d_{1}\{<,=,>\}$ id d_{2}, \cdots
The infixr operator works exactly as the infix operator (above), but adds $i d_{1}$ as a right-associative operator.
nonfix id, \cdots
The nonfix declaration removes the given identifiers from the internal operator precedence table. After nonfix-ing an identifier, it will no longer parse as an infix operator (but may still be used as a function).

Expressions

unit, bool, int, real, char, str
The atomic data types evaluate to themselves.
$\left(x_{1}, \cdots, x_{k}\right)$
The k-tuple notation (a tuple of k elements) evaluates to a k-tuple with all its elements in normal form, i.e.: (eval $\left(x_{1}\right), \cdots$, eval $\left.\left(x_{k}\right)\right)$.
[x_{1}, \cdots]
List notation evaluates to a list with all elements in normal form, i.e.: $\left[\right.$ eval $\left.\left(x_{1}\right), \cdots\right]$.
fn $p_{1} \cdots=x_{1} \mid \cdots$
The $f n$ syntax evaluates to a function from patterns p_{i} to expressions x_{i}. The vertical bar separates individual cases. Multiple patterns between $f n$ and = indicate currying. See fun for details.

In a curried function, an explicit guard is associated with the innermost function, e.g.:
fn $a b c$ where $g=x$ equals fn $a=f n b=f n c$ where $g=x$.
$f x$
Juxtaposition of a function f and an object x applies the function f to x. Furthermore:

$$
\begin{aligned}
& f g x=(f g) x \\
& f(g x)=f(g x) \\
& f^{\prime} g x=f(g x)
\end{aligned}
$$

$x_{1} R x_{2}$
Functions defined as infix operators (R; see infix, pg 36) may be used as operators in infix expressions. See the operator table on page 32 for a full list of pre-defined operators. The usual precedence and associativity rules apply, e.g.:

$$
\begin{aligned}
& a-b-c=((a-b)-c) \\
& a * b+c * d=(a * b)+(c * d)
\end{aligned}
$$

Also note:

$$
\begin{aligned}
& f x R y=(f x) R y \\
& f^{\prime} x R y=f(x R y)
\end{aligned}
$$

$\#$ int T_{k}
This is a shorthand form of $r e f\left(T_{k}, i n t\right)$.
$\left(x_{1} ; x_{2} ; \cdots\right)$
Evaluate the given expression in sequence, from left to right. Usually used for effect.
x_{1} also \cdots also x_{n}
Evaluate to the first false expression x_{i} or to x_{n} if all prior expressions evaluated to non-false values. false also x never evaluates x.
x_{1} or x_{2} or \cdots
Evaluate to the first non-false expression x_{i} or to false, if all expressions are false. true or x never evaluates x.
x_{0} handle :id $=x_{1} \mid \cdots$
Evaluate x_{0} with the exception handler $f n$:id $d_{1}=x_{1} \mid \cdots$ in effect. Raising any :id d_{i} defined in the exception handler will evaluate and return the corresponding x_{i}.
raise :id
Raise the exception :id. Raising an exception aborts the current computation and invokes the innermost handler handling the given exception. Exceptions without a handler terminate program execution.
if x_{1} then x_{2} else x_{3}
First evaluate x_{1}. If it evaluates to a non-false result, evaluate and return x_{2} else evaluate and return x_{3}.
case x_{0} of $p_{1}=x_{1} \mid \cdots$
An alternative form of $\left(f n p_{1}=x_{1} \mid \cdots\right) x_{0}$.
$x_{1} \gg x_{2}$
Evaluate expression x_{2} with program input read from x_{1}. x_{1} must evaluate to an instream object.
$x_{1} \ll x_{2}$
Evaluate expression x_{2} with program output written to x_{1}. x_{1} must evaluate to an outstream object.

mLite Function Summary

Arithmetics
$r_{1} * r_{2} \rightarrow r$
Return the product of r_{1} and r_{2}.
$r_{1}+r_{2} \rightarrow r$
Return the sum of r_{1} and r_{2}.
$r_{1}-r_{2} \rightarrow r$
Return the difference between r_{1} and r_{2}.
$r_{1} / r_{2} \rightarrow r$
Return the quotient of r_{1} and r_{2}.
$r_{1}<r_{2}\left|r_{1}<=r_{2}\right| r_{1}<>r_{2}\left|r_{1}=r_{2}\right| r_{1}>r_{2}\left|r_{1}\right\rangle=r_{2} \rightarrow b$
These functions implement the "less-than", "less/equal", "notequal", "equal", "greater-than", and "greater/equal" predicates, respectively. They return true, if their conditions apply.
$c_{1}<c_{2}\left|c_{1}<=c_{2}\right| c_{1}<>c_{2}\left|c_{1}=c_{2}\right| c_{1}>c_{2} \mid c_{1}>=c_{2} \rightarrow b$
The domain of the above predicates also covers the char type. When applied to two chars,

$$
c_{1} R c_{2}
$$

holds, if and only if

$$
\text { ord } c_{1} R \text { ord } c_{2}
$$

for any operator R of the above set.
$s_{1}<s_{2}\left|s_{1}<=s_{2}\right| s_{1}<>s_{2}\left|s_{1}=s_{2}\right| s_{1}>s_{2} \mid s_{1}>=s_{2} \rightarrow b$
The domain of the above predicates also covers the string type. The final character of each string is assumed to be NUL. So, $s_{1}<s_{2}$, if and only if there is a position p so that

$$
r e f\left(s_{1}, p\right)<r e f\left(s_{2}, p\right)
$$

and each

$$
\operatorname{ref}\left(s_{1}, i\right)=\operatorname{ref}\left(s_{2}, i\right)
$$

for $0 \leq i<p$.
$s_{1}>s_{2}$, if $s_{2}<s_{1} \cdot s_{1}<=s_{2}$, if not $s_{2}>s_{1} \cdot s_{1}>=s_{2}$, if not $s_{1}<s_{2}$.
$s_{1}=s_{2}$, if len $s_{1}=$ len s_{2} and all $\operatorname{ref}\left(s_{1}, i\right)=\operatorname{ref}\left(s_{2}, i\right)$ for $0 \leq i<k$, where $k=$ len $s_{1} . s_{1}<>s_{2}$, if not $s_{1}=s_{2}$.
$x=b|x=[]| x=() \rightarrow b$
The = operator can be safely applied to any type of object, as long as the other object is a bool, or the empty list, or unit. In this case, it returns true, when the two objects are identical. It returns false, if the objects are not identical - this includes the case that the objects have incompatible types, e.g. $123=() \rightarrow$ false .
$a b s r \rightarrow r$
Return the magnitude $|r|$ of r.
ceil $r \rightarrow n$
Return $\lceil r\rceil$ (ceiling of r, the smallest integer that is not smaller than r).
n_{1} div $n_{2} \rightarrow n$
Return $\left\lfloor n_{1} / n_{2}\right\rfloor$ (the floored quotient of n_{1} and n_{2}).
floor $r \rightarrow n$
Return $\lfloor r\rfloor$ (the largest integer that is not larger than r).
$\operatorname{gcd}\left(n_{1}, n_{2}\right) \rightarrow n$
Return the greatest common divisor of n_{1} and n_{2}, i.e. the largest integer that divides both n_{1} and n_{2}.
$\operatorname{lcm}\left(n_{1}, n_{2}\right) \rightarrow n$
Return the least common multiple of n_{1} and n_{2}, i.e. the smallest integer that is a multiple of both n_{1} and n_{2}.
$\max \left(r_{1}, r_{2}\right) \rightarrow r$
Return the larger one of the numbers r_{1} and r_{2}. Return a real number, if at least one of the numbers is a real number, else return an integer.
$\min \left(r_{1}, r_{2}\right) \rightarrow r$
Return the smaller one of the numbers r_{1} and r_{2}. Return a real number, if at least one of the numbers is a real number, else return an integer.
$n_{1} \bmod n_{2} \rightarrow n$
Return $n_{1}-\left\lfloor n_{1} / n_{2}\right\rfloor \cdot n_{2}$ (the modulus of n_{1} and n_{2}).
f_{1} o $f_{2} \rightarrow f$
Return the function composition $f n x=f_{1}\left(f_{2} x\right)$.
n_{1} rem $n_{2} \rightarrow n$
Return n_{1} - trunc $\left(n_{1} / n_{2}\right) \cdot n_{2}$ (the truncated division remainder of n_{1} and n_{2}).
sgn $r \rightarrow n$
Return the sign of $r: r<0 \rightarrow-1, r>0 \rightarrow 1$, and $r=0 \rightarrow 0$.
trunc $r \rightarrow n$
Return $\operatorname{sgn}(r) \cdot\lfloor|r|\rfloor$ (in other words: remove the fractional part of r and return the integer part only).
sqrt $r \rightarrow r$
Return \sqrt{r}.
$r_{1}{ }^{\wedge} r_{2} \rightarrow r$
Return x^{y}, where $x=r_{1}$ and $y=r_{2}$.
${ }^{\sim} r \rightarrow r$
Return $-r$, the negative value of r.
$r_{1}^{\sim}<r_{2}\left|r_{1}^{\sim}<=r_{2}\right| r_{1}^{\sim}<>r_{2}\left|r_{1}^{\sim}=r_{2}\right| r_{1}^{\sim}>r_{2}\left|r_{1}^{\sim}\right\rangle=r_{2} \rightarrow b$
For numbers, these operators are identical to $<,<=,,=$, etc.
$c_{1} \sim<c_{2}\left|c_{1} \sim=c_{2}\right| c_{1} \sim<>c_{2}\left|c_{1} \tilde{=}=c_{2}\right| c_{1} \sim c_{2} \mid c_{1} \sim=c_{2} \rightarrow b$
These are shorthand notations for

$$
c_{-} \text {downcase } c_{1} R c_{-} \text {downcase } c_{2}
$$

where R is in $\{<,<=,=,<>,>,>=\}$.
$s_{1} \sim<s_{2}\left|s_{1} \sim==s_{2}\right| s_{1} \sim<>s_{2}\left|s_{1} \tilde{=}=s_{2}\right| s_{1} \sim>s_{2} \mid s_{1} \sim>=s_{2} \rightarrow b$
These are equal to their counterparts ($<,<=,=$, etc), but use the above case-folding variants of the comparison operators to compare individual characters.

Structural Operations

Many functions in this section are curried higher-order functions. The signatures of these functions are specified like this:

$$
\text { map } f L \rightarrow L
$$

which makes the function appear to take more than one argument. However, the above is merely a shorthand notation for

$$
\operatorname{map} f \rightarrow L \rightarrow L
$$

So, for example, map is always applied to a single unary function, giving another function $L \rightarrow L$, which may then be applied on the spot to a list. E.g.: $\operatorname{map}\left(f n x=2^{\wedge} x\right)[1,2,3,4,5]$.

$$
x:: L \rightarrow L
$$

Attach a new element x to the front of an existing list L, giving a new list.
$L_{1} @ L_{2} \rightarrow L$
Return a new list that consists of the concatenation of L_{1} and L_{2}.
$s_{1} @ s_{2} \rightarrow s$
Return a new string that consists of the concatenation of the strings s_{1} and s_{2}.
append_map $f L \rightarrow L$
append_map is like map, but appends the elements of its result rather than consing them, i.e.:

$$
\text { append_map } f[a, b, c]
$$

would be equal to

$$
f a @ f b @ f c
$$

clone $x \rightarrow x$
Return an exact copy of the object x. Note that only vectors are actually cloned by this function, because all other data types are immutable.
x_{1} eql $x_{2} \rightarrow b$
The eql function is an extension of the = operator that covers all data types of the mLite language and also allows to compare incompatible types, resulting in false.

Lists, vectors, and tuples are compared element-wise and recursively. This function is similar to Scheme's "equal?" procedure.
explode $s \rightarrow L$
Return a new list that contains the same characters as the string s in the same order. This is the reverse operation of implode.
filter $f L \rightarrow L$
Return a new list containing all elements x_{i} satisfying the condition $f x_{i}$ from the list L.
fold $(f, x) L \rightarrow L$
Fold the list L by applying f to the neutral element x and the first element of L (giving a result R) and then applying f to R and the second element of L, etc.

Formally, fold $(f, x)[a, b, c]$ is equal to $f(f(f(x, a), b), c)$.
foldr $(f, x) L \rightarrow L$
The foldr function is like fold, but folds the list L to the right, so
foldr $(f, x)[a, b, c]$ is equal to $f(a, f(b, f(c, x)))$.
foreach $f L \rightarrow$ ()
The foreach function is like map, but calls f only for effect. It does not collect any result and always returns ().
head $L \rightarrow x$
Return the first element of a list.
implode $L \rightarrow s$
Return a new string that contains the same characters as the list L in the same order. This is the reverse operation of explode.
iota $n \rightarrow L$
Return a list $[1,2, \cdots, n]$.
iota $\left(n_{1}, n_{2}\right) \rightarrow L$
Return a list $\left[n_{1}, n_{1}+1, \cdots, n_{2}\right]$.
len T_{k} I len LI len V|len $s \rightarrow n$
Return the length of the given data object. For lists and vectors, this is the number of elements, for strings the number of characters, for tuples, their order.
map $f L \rightarrow L$
Map the function f over the list L, generating a new list

$$
\left[f a_{1}, f a_{2}, \cdots\right]
$$

where each a_{i} is an element of L.
newstr $(n, c) \rightarrow s$
Return a new string of the length n containing the character c in all positions of the string.
newvec $(n, x) \rightarrow V$
Return a new vector of the length n containing the element x in all slots of the vector.
order $x \rightarrow n$
Return the order of x. The order of each "true" tuple T_{k} is k. The order of () is zero, and the order of all other objects is one, i.e. all singular objects are 1-tuples.
$\operatorname{ref}(L, n)\left|\operatorname{ref}\left(T_{k}, n\right)\right| \operatorname{ref}(V, n) \rightarrow x$
Extract the n 'th element of the given data object. Extracting an element from a vector is guaranteed to be an $O(1)$ operation.
$r e f(s, n) \rightarrow c$
Extract the n 'th char of the string s.
rev $L \rightarrow L$
Return a new list containing the elements of L in reverse order.
rev $s \rightarrow s$
Return a new string containing the characters of the string s in reverse order.
$\operatorname{set}\left(T_{k}, n, x\right) \rightarrow T_{k}$
Return a copy of the tuple T_{k} with the n 'th element replaced by x.
set $(s, n, c) \rightarrow s$
Return a copy of the string s with the n 'th char replaced by c.
set $(V, n, x) \rightarrow V$
Change the n 'th element of the vector V to x.
Note: this will mutate V !
$\operatorname{setvec}\left(V, n_{1}, n_{2}, x\right) \rightarrow V$
Change the elements in the slots $n_{1} \cdots n_{2}-1$ of the vector V to x.
Note: this will mutate V !
$\operatorname{sub}\left(L, n_{1}, n_{2}\right) \rightarrow L$
Return a new list containing the elements at positions $n_{1} \cdots n_{2}-1$ of the original list L.
$\operatorname{sub}\left(s, n_{1}, n_{2}\right) \rightarrow s$
Return a new string containing the characters at positions $n_{1} \cdots n_{2}-1$ of the original string s.
tail $L \rightarrow L$
Return the tail (all but the first element) of a list.
$z i p L_{1} L_{2} \rightarrow L$
Combine the lists L_{1} and L_{2} pairwise, returning a list of tuples:

$$
z i p[1,2,3][4,5,6] \rightarrow[(1,4),(2,5),(3,6)]
$$

This is identical to zipwith (fn $x=x$).
zipwith $f L_{1} L_{2} \rightarrow L$
Combine the lists L_{1} and L_{2} pairwise using the function f, so that zipwith $f[1,2,3][4,5,6]$
would be equal to

$$
[f(1,4), f(2,5), f(3,6)]
$$

Type Predicates and Conversion

bool $x \rightarrow b$
Return true, if x is a boolean.
char $x \rightarrow b$
Return true, if x is a char.
chr $n \rightarrow c$
Return the character at the code point n. Inverse operation: ord.
int $x \rightarrow b$
Return true, if x is an integer.
not $x \rightarrow b$
Return true, if x is false, else return false (logical "not"; all values but false are considered to be "true").
ntos $r \rightarrow s$
Return a string representation of the number r. Negative numbers will have a "-" prefix.
ord $c \rightarrow n$
Return the code point of the character c. Inverse operation: chr.
real $x \rightarrow b$
Return true, if x is a real number. Note: int x implies real x.
ston $s \rightarrow r$ l false
Convert a numeric string to a number. If the string s contains a decimal point ("."), return a real number, otherwise return an integer. Both "-" and " "" will be accepted as a leading minus sign. When s does not represent a valid number, ston will return false.
str $x \rightarrow b$
Return true, if x is a string.
vec $x \rightarrow b$
Return true, if x is a vector.

Char Functions

c_alphabetic $c \rightarrow b$
Return true, if c is a letter of the English alphabet.
c_downcase $c \rightarrow c$
If $c _$upper c, return the lower-case variant of c, else return c.
c_lower $c \rightarrow b$
Return true, if c is a lower-case letter of the English alphabet.
c_numeric $c \rightarrow b$
Return true, if c is a decimal digit.
$c_{\text {_upcase }} c \rightarrow c$
If $c _l o w e r ~ c$, return the upper-case variant of c, else return c.
c_{-}upper $c \rightarrow b$
Return true, if c is an upper-case letter of the English alphabet.
c _whitespace $c \rightarrow b$
Return true, if c is a non-printing character (blank, or ASCII HT, LF, CR, or FF).

Input/Output Functions

append_stream $s \rightarrow$ SO
Open the file s for writing and return an outstream object for accessing that file. When the file already exists, append output to the existing file.
close SI | close SO \rightarrow ()
Close the given instream or outstream. Note that streams are also closed automatically (by the garbage collector), so there is normally no need to use close, except for the rare case where output must be committed at a specific point during program execution.
eof $x \rightarrow b$
Return true, if x is an end-of-file indicator (EOF), as delivered by readc, peekc, and readln.
instream $s \rightarrow$ SI
Open the file s for reading and return an instream object for accessing that file. An error is reported, if the file does not exist.
load $s \rightarrow$ ()
Load the program in the file s as if typed in at the mLite prompt. When an error occurs, stop loading.
outstream $s \rightarrow$ SO
Open the file s for writing and return an outstream object for accessing that file. When the file already exists, it is truncated to zero length.
peekc () $\rightarrow c$
Read a character from the current input stream and return it. Do not consume the input character, i.e. a subsequent read operation will yield the same character again. When there are no (more) characters to be read from the stream, return EOF.

```
print x ()
```

Write a suitable representation of the expression x to the current output stream.
println $x \rightarrow$ ()
Shorthand for (print x; print \#"newline").
readc () $\rightarrow c$
Read a character from the current input stream and return it. When there are no (more) characters to be read from the stream, return EOF.
readln () $\rightarrow s$
Read one line of characters from the current input stream and return it. A line is delimited by a platform-specific newline sequence or the EOF. When there are no (more) characters to be read from the stream, return EOF.

Appendix

mLite Grammar

$;$; comment \quad is a comment to the end of line.

The \& grammar operator indicates that no spaces are allowed between two sequences, i.e. it defines lexemes rather than sentences. For instance, 12 would match 12 with any number of blanks in between, but $1 \& 2$ would only match 12 (with no blanks between the digits).

```
top :=
    \(\operatorname{decl}(\) ';'top ) *
    \(\mid \operatorname{expr}(; ;\) top )*
    \(\mid \varepsilon\)
program \(:=\) decl + expr
```

decl:=
'val' pat '=' $\operatorname{expr}($ 'and' pat '=' expr) *
I 'fun' id curried_match ('and' id curried_match) *
| 'type' id '=' cons ('I’ cons) *
| 'exception’ :id ('and’ :id) *
| 'local' ldecls 'in' ldecls 'end'
I 'infix’ fdecl(','fdecl) *
| 'infixr’ fdecl((,’fdecl) *
| 'nonfix’ id (','id) *

```
fdecl:=
    id '=' id
    lid '<' id
    | id '>' id
```

cons :=
:id
I :id ‘('id(','id) *')’

```
ldecls := ldecl(';`ldecls )*
ldecl:=
    'val' pat '=' expr ('and' pat '=' expr ) *
    | 'fun' id curried_match( 'and' id curried_match ) *
curried_match :=
        guarded_pat + '=' expr
    ( 'I'guarded_pat + '=' expr ) *
match := guarded_pat '=' expr( 'I' guarded_pat '=' expr ) *
guarded_pat:=
        pat
    | pat `where’ or_expr
pat:= pat_or
pat_or:=
    pat_also
    | pat_or 'or' pat_also
pat_also :=
        pat_infix
    I pat_also 'or' pat_infix
pat_infix :=
        pat_funapp
    | pat_infix id pat_infix
pat_funapp :=
        pat_primary
    | pat_funapp pat_primary
pat_primary:=
        unit
    | bool
    | int
```

| real
I char
| str
| id
|',
| list_pat
I tuple_pat
I :id id
I :id tuple_pat
I '(' pat ')'

```
list_pat:=
            '[' ']'
    | '['pat(`,'pat )* `]`
    | '[' pat `::' id ']'
    | ‘[' pat '::' list_pat ']'
```

tuple_pat $:=$ '('pat (','pat $)+$ ')'
expr:=
case_expr
| case_expr '<<' case_expr
| case_expr '>>' case_expr
sequence $:=$ case_expr (';’ caseexpr) *
case_expr:=
ifexpr
| 'case’ expr 'of’ match
ifexpr :=
raise_expr
| 'if' expr 'then' expr 'else' expr
raise_expr:=
handle_expr
| 'raise’ :id

```
handle_expr:=
        or_expr
    | or_expr 'handle' match
or_expr:=
        also_expr
        | or_expr 'or'also_expr
also_expr :=
        apply
    | also_expr 'also' apply
apply :=
        infix
    | apply"' infix
infix :=
        funapp
    I infix id infix
funapp :=
        primary
    | funapp primary
primary:=
        unit
        | bool
        | int
        | real
        I char
        | str
        | tuple
        | list
        | id
        | '#' int tuple
        | '#' int id
        | 'fn' curried_match
```

I 'let' ldecls 'in' sequence 'end'
I '(' sequence ')'
list :=
'[']'
I '[’expr(',' $\operatorname{expr})^{*}$ ']’
| '[’ expr ': :' list ']’
tuple $:=$ '(' $\operatorname{expr}($ ',' $\operatorname{expr})+$ ')'
unit $:=$ (' ' ')'
bool :=
'true'
I 'false’
int $:=$
natural
$\left.\right|^{\text {‘~ }}$ \& natural
natural := digit
| digit \& natural
real:=
positive_real
$\left.\right|^{\prime \sim}$ \& positive_real
positive_real:=
int \& \because ? \& int
। int \& ' e ' \& int
l int \& '.'\& int \& ' e ' \& int
char := '\#"' \& <c> \& '"'
str := ‘"’ \& <c>*\& '"'
:id := ':'\& name
id :=
name
I opname
name :=
sym_char
| sym_char \& sym_chars
op_name :=
op_char
| op_char \& op_name
sym_char:= ' a '|... | ' z '
| 'A'|... | ' Z '
| ':’|'_'|’"
sym_chars :=
sym_char
I digit
| sym_chars \& sym_chars
op_char:=

|‘='|'>’| 'ノ'|‘~|""
digit :=
| '5’| '6’| '7’| ' 8 ’| 9 ’

mLite and Scheme Functions

mLite	Scheme
c_alphabetic	char-alphabetic
c_downcase	char-downcase
c_lower	char-lowercase
c_numeric	char-numeric
c_upcase	char-upcase
c_upper	char-uppercase
c_whitespace	char-whitespace
chr	integer->char
div	quotient
eof	eof-object?
explode	string->list
instream	open-input-file
newstr	make-string
newvec	make-vector
ord	char->integer
outstream	open-output-file
peekc	peek-char
print	display
readc	read-char
rem	remainder

Differences to ML

- The module language is completely absent.
- There is no static type system. This may change, though.
- Lists are heterogenous, this may also change.
- Function names are not repeated in fun definitions, e.g.:
fun not true $=$ false $\left.\right|_{-}=$true
instead of
fun not true $=$ false \mid not ${ }_{-}=$true.
- An equal sign separates the pattern from the body in $f n$, e.g.: $f n x=x$ instead of $f n x=>x$.
- Currying cannot be combined with multiple patterns, e.g. the function
fun $p x 0=1 \mid x y=p x(y-1)$
would have to be written using a tuple as argument:
fun $p(x, 0)=1 I(x, y)=p(x, y-1)$
- There are implicit and explicit guards, e.g.:
fun $f(a, b)$ where $a<b=\ldots$
or
fun $f x<0=\ldots$
- All user-defined types and constructors must begin with a colon, e.g.: :cons, :node, etc.
- Algebraic types are declared with the type keyword instead of datatype, and the declaration syntax is different, e.g.
type :list = :nil \mid :cons $(x,: l i s t)$
instead of
datatype 'a list = nil | cons of ' a *'a list
- Exceptions are just atomic types, so exception :exn is equal to type : exn = : exn.
- Only val and fun are allowed in the declaration parts of let and local.
- There are no val rec declaration, fun must be used instead.
- To concatenate strings, the overloaded @ operator is used instead of the ^operator (which is used for exponentiation).
- Logical or is named or instead of orelse.
- Logical and is named also instead of andalso.
- The $<, \leq,<>, \quad=$, and \geq operators implement caseinsensitive lexical comparison.

See the mLite Function Summary (pg 39) for an overview of predefined m Lite functions. The function library differs largely from ML's.

References

[DEFSML] Robin Milner, et al.
"The Definition of Standard ML (Revised)" MIT Press, 1997
[HOL14] Nils M Holm "Implicit Guard Expressions in Functional Programming Languages" Self-published, 2014
[R4RS] William Clinger and Jonathan Rees (Editors) "Revised(4) Report on the Algorithmic Language Scheme"
ACM Lisp Pointers IV (July-September 1991)

