
IMPLICIT GUARD EXPRESSIONS IN

FUNCTIONAL PROGRAMMING LANGUAGES

Nils M Holm, 2014

1. Introduction

Most functional programming languages use

pattern matching to bind arguments to values. Guard

expressions are used in some languages to put seman-

tic constraints on patterns, but patterns are syntacti-

cally separated from guard expressions, which reduces

locality (i.e. pattern variables and constraints are not in

the same place) and unnecessarily duplicates code.

In this paper, the principle of implicit guard

expressions is introduced, which combines patterns

and guard expression in the same syntactic construct,

thereby creating locality and eliminating redundant

code.

2. Pattern Matching

In the following, a small set of objects will be

used to explain pattern matching. This set consists of

numbers, k-tuples, lists, and variables.

• A number is a sequence of decimal digits, i.e. an

integer.

• A k-tuple (or tuple) is an ordered set of k elements.

E.g., (a,b,c) is a 3-tuple. Tuples may contain any

type of object, even tuples. Numbers, lists, and

variables are 1-tuples. Parentheses can be omitted

around 1-tuples.

• A list is a sequence of elements of any type, e.g.

[a,b,c]. Elements can be added to lists using the

cons (::) operator: a :: [b] → [a, b].1

• A variable is denoted by a sequence of alphabetic

characters. Variables are bound to values by pattern

matching.

The pattern matching function m maps a pattern

p and an object x to a tuple ((v1, a1), . . .), indicating

that each variable vi of p is now bound to the corre-

sponding argument ai of x. For instance:

m([a, b], [1, 2]) → ((a, 1), (b, 2))

1 ‘‘a → b’’ means ‘‘a evaluates to b’’.

When a match fails, the function returns ε instead:

m(1, 2) → ε

A result of () (0-tuple, unit) indicates that the match

succeded, but no variables were bound:

m(1, 1) → ()

The matching function m works as follows:

• Each number matches itself.

• A variable matches any object, binding that object

to the variable.

• A k-tuple Tk,1 matches another k-tuple Tk,2, if both

tuples have pairwise equal elements. Only k-tuples

of the same order (number of elements) match. For

example:

m((1, 2), (1, 2)) → ()

m((1, 2), (2, 1)) → ε

m((1, 2), (1, 2, 3)) → ε

• A list L1 matches another list L2, if (1) both lists

are the empty list [], or (2) L1 = h1: : t1 and

L2 = h2: : t2 and m(h1, h2) ≠ ε and m(t1, t2) ≠ ε .

(I.e.: both lists contain pairwise equal elements.)

When matching a list L against a pattern p con-

taining the constructor : :, the constructor decomposes

the value L into the first element of the list and the rest

of the list and optionally binds the components of the

list to variables. For example:

m(1: : [2], 1: : [2]) → ()

m(1: : [2], [1, 2]) → ()

m(1: : x, [1, 2, 3]) → ((x, [2, 3]))

m(h : : t, [1, 2, 3]) → ((h, 1), (t, [2, 3]))

3. Building Functions with Pattern Matching

A tiny subset of the ML programming language2

will be used to demonstrate how to build funtions with

- 1 -

pattern matching. Generally, a function f of patterns

p1, . . . to expressions x1, . . . is defined as follows:

fun f p1 = x1 | . . .

where the vertical bar denotes a logical ‘‘or’’. In the

function application

f a

the argument a is matched against each pattern pi of

f , and the expression xi associated with the first

matching pattern is evaluated with the bindings estab-

lished by m in effect. For example, the following pro-

gram implements the power function (x raised to the

power of y):

fun P (x, 0) = 1
| (x, y) = x * P(x, y − 1)

4. Guarded Patterns

A guard is an expression that belongs to the pat-

tern part rather than the expression part of a function.

It puts some semantic constraints on the values a pat-

tern will match. The problem guards solve is as fol-

lows:3

fun gcd (a, 0) = a
| (0, b) = b
| (a, b) = if a < b then

gcd (a, b mod a)
else

gcd (b, a mod b)

Here the otherwise declarative nature of the pro-

gram is disturbed by making the distinction between

the cases a < b and a ≥ b on the expression side of the

function. In a mathematical definition, though, the dis-

tinction would be made like this:

gcd(a, b) =







a

b

gcd(a, b mod a)

gcd(b, a mod b)

if b = 0

if a = 0

if a < b

otherwise

2 See ‘‘The Definition of Standard ML’’ by Milner, et al, MIT Press

1997.
3 The gcd function computes the greatest common divisor of a and

b using the Euclidean algorithm.

I.e. there is only a pattern and an expression side,

and nothing ‘‘in between’’, like the ‘‘if ’’ in the above

program. Using guard expressions, the mathematical

defintion can be translated directly to a corresponding

program:4

fun gcd (a, 0) = a
| (0, b) = b
| (a, b) where a < b

= gcd (a, b mod a)
| (a, b) = gcd (b, a mod b)

Guards also allow to use the same basic

(unguarded) pattern multiple times, but each time with

different constraints.

In the above extension of the ML language,5 the

conditional expression c after the where keyword lim-

its the case of the function to values that match the

pattern and satisfy the condition c. So the third case

of gcd is only selected when a < b holds. Otherwise,

the final case, without any limiting guard, is chosen.

The guard mechanism described here so far will

be called an explicit guard, because it uses an explicit

expression, following the where keyword, to formulate

the limiting condition.

While explicit guards are a general and flexible

mechanism for specifying guard expressions, they can

be cumbersome in some simple cases. For instance:

signum x where x < 0 = ˜1
| x where x > 0 = 1
| x = 0

5. Implicit Guards

Under certain conditions, the guard expressions

can be pulled into the pattern, so that variables of the

guard expression become variables of the pattern at

the same time. This will be called an implicit guard,

because the guard is contained implicitly in the pat-

tern.

Using implicit guards, the signum function can

be written this way:

4 The where syntax is not part of Standard ML.
5 See ‘‘The mLite Language’’ by Holm, 2014

- 2 -

signum x < 0 = ˜1
| x > 0 = 1
| x = 0

I.e. ‘‘signum of x < 0 is −1’’, etc.

Implicit guards allow to apply conditions on the

spot inside of a pattern, which is more concise than

explicit guards and increases the locality of the guard

expressions, because they do not have to be moved to

a separate clause.

Here is another example:6

fun filter (f , []) = []
| (f , f h : : t) = h : : filter(f , t)
| (f , h : : t) = filter(f , t)

The filter function extracts objects satisfying the

property f from a list, e.g.:7

filter((fn x = x < 0), [1, ˜2, 3, ˜4, 5]) → [˜2, ˜4]

It uses the implicit guard f h in the pattern

(f , f h : : t) to select matching elements from the list.

Because function application binds stronger than the ::

operator, the predicate f is applied to the first element

of the list, and the pattern matches only if f h returns

truth.

While implicit guards are more concise and

more local than explicit guards, they do not offer the

same degree of flexibility.

These are the conditions under which implicit

guards may be used:

• No two variables of the same pattern may be com-

bined in the same guard.

• Only one variable may appear in an infix expres-

sion in a guard.

• In a function application, the pattern variable must

be the rightmost component.

• Multiple implicit guard expressions may appear in

a tuple or list, as long as they are independent and

obey the above rules.

For example, due to the first rule, the explicit

guard

6 Of course, this implementation is naïve, it only serves the purpose

of demonstrating the use of an implicit guard.
7 The syntax fn p = x defines an anonymous function of a pattern p

to an expression x.

(a, b) where a < b

in the gcd function cannot be converted to an implicit

guard, because it combines the pattern variables a and

b in the expression a < b.

Implicit guards of the form a R b, where R is an

infix operator and both a and b are variables, cannot

be used, because it is not possible to determine which

one of the variables would be the pattern variable.8

In a function application, the rightmost compo-

nent is considered to be the pattern part. In all of the

expressions f x, f g x, and f (g x), the x would be

the pattern variable.

Note: Because function application has the same

syntax as currying and the equal operator (=) is used to

separate function bodies from patterns in ML, implicit

guards using the = operator or function application

have to be parenthesized:

fun f x = y equals fun f = fn x = y

fun (f x) = y equals fun x where f x = y

fun f x = 0 = y equals fun x = (0 = y)

fun f (x = 0) = y equals fun x where (x = 0) = y

6. Implementation

Each implicit guard can be rewritten as a pattern

and an explicit guard:

f h : : t = h : : t where f h

This conversion will be formalized in the follow-

ing by devising a function ρ of an implicit guard to a

tuple of a pattern and an explicit guard expression:

ρ(implicit) → (pattern, explicit)

Furthermore, the functions P and G will be used to

refer to the pattern and guard part of the resulting

tuple:

P(pattern, guard) → pattern

G(pattern, guard) → guard

8 One of the variables could be chosen by convention, but even then,

more complex formulae would render this approach impractical.

- 3 -

So, for instance:

ρ(x < 0) → (x, x < 0)

P(ρ(x < 0)) → x

G(ρ(x < 0)) → x < 0

The ρ function is defined as follows:

ρ(number) → (number, ∅)

ρ(variable) → (variable, ∅)

The empty set sign ∅ denotes the absence of a

guard expression in a tuple. In some contexts, it can be

interpreted as

G(p, ∅) → true

I.e., the tuple (p, ∅) indicates an unguarded pat-

tern p.

The most simple case of function application is

the combination (⋅) of two variables:

ρ(f x) = ρ(f) ⋅ ρ(x)
= (f , ∅) ⋅ (x, ∅)
= (x, f x)

Note that it is always the pattern of the righthand

side of (⋅) that determines the pattern component of the

result. More generally, the conversion of function

application is defined as:

ρ(x y) = (P(ρ y), x′ y′)

where

(C1)x′ =




G(ρ x)

P(ρ x)

if G(ρ x) ≠ ∅
otherwise

and

(C2)y′ =




G(ρ y)

P(ρ y)

if G(ρ y) ≠ ∅
otherwise

So whenever a guard is available, it will be used

and otherwise the corresponding pattern will be used.

A pattern is always available, because ∅ never appears

in a the pattern position of a tuple returned by ρ .

Using the above rules and left-associative func-

tion application, higher order application becomes:

ρ(f g x) = ρ(f g) ⋅ ρ x
= (g, f g) ⋅ (x, ∅)
= (x, (f g)x)

Function composition becomes:

ρ(f (g x)) = ρ f ⋅ ρ(g x)
= (f , ∅) ⋅ (x, (g x))
= (x, f (g x))

So, generally:

ρ(f1 f2
. . . x) = (x, ((f1 f2). . .)x)

ρ(f1(f2
. . . x)) = (x, (f1(f2

. . . x)))

The general forms of infix operation are the fol-

lowing (R denotes an infix operator):

ρ(id R x) = (id , (id R x))

ρ(x R id) = (id , (x R id))

ρ(id R id) = (id , (id R id))

ρ(id1 R id2) = error

That is, an identifier (variable) may appear on

either side of the operator, but if it appears on both

sides, it must be the same identifier. Two different

identifiers in an infix operation are an error.

More complex operands to infix operators,

including chains of infix operations, are covered as

follows:

ρ(x R y) = (p, x′ R y′)

where

p =




P(ρ x)

P(ρ y)

if P(ρ x) is an identifier

otherwise

and x′ and y′ are formed as described in (C1)

and (C2).

Naturally, precedence and associativity rules of

infix operators have to be obeyed. In the following, Rn

denotes a left-associative infix operator of precedence

n, where larger values denote stronger binding to oper-

ands. Then,

ρ(x R1 y R1 z) = ρ((x R1 y) R1 z)

ρ(x R2 y R1 z) = ρ((x R2 y) R1 z)

ρ(x R1 y R2 z) = ρ(x R1 (y R2 z))

- 4 -

RR denotes a right-associative operator:

ρ(x RR y RR z) = ρ(x RR (y RR z))

Parentheses override associativity and prece-

dence:

ρ((x R1 y) R2 z) = ρ((x R1 y) R2 z)

ρ(x R2 (y R1 z)) = ρ(x R2 (y R1 z))

ρ(x R1 (y R1 z)) = ρ(x R1 (y R1 z))

ρ((x RR y) RR z) = ρ((x RR y) RR z)

Without parentheses function application binds

stronger than infix operators:

ρ(f x + 1) = ρ((f x) + 1)

Of course, this means that an actual implementa-

tion has to consider the properties of pre-defined oper-

ators and, in the case of extensible languages like ML,

also the properties of user-defined operators.

In the context of implicit guard conversion, logic

operators, such as ML’s orelse and andalso, can be

considered to be low-precedence infix operators.

More high-level constructs, like if-then-else, are

best kept in function bodies, and should not be used in

guards anyway, because they would blur the border

between guards and function bodies. Guard expres-

sions, both implicit and explicit, should be short and

easily comprehensible forms.

k-tuples are converted as follows:

ρ(x1, x2, . . .) = (p, g)

where

p = (P(ρ x1), P(ρ x2), . . .)

and

g = (G(ρ x1)) × (G(ρ x2)) × . . .

and

G(x, ∅) = true9

9 Of course, an actual implementation would omit segments of the

form ‘‘× true’’, because x × true = x.

Here × denotes the logical ‘‘and’’ operation, i.e.

the explicit guard of a tuple is the conjunction of all

implicit guards in the tuple.

Lists are converted in the same way as tuples:

ρ[x1, x2, . . .] = (p, g)

where

p = [P(ρ x1), P(ρ x2), . . .]

g = (G(ρ x1)) × (G(ρ x2)) × . . .

Constructors like ::, finally, are part of the pat-

tern, but their arguments may contain implicit guards.

Hence:

ρ(x1 : : x2) = (p, g)

where

p = P(ρ x1) : : P(ρ(x2))

g = (G(ρ x1)) × (G(ρ(x2)))

7. Examples

ρ(f x = g x) = ρ(ρ(f x) = ρ(g x))
= ρ((x, f x) = (x, g x))
= (x, f x = g x)
= x where f x = g x

ρ[x > 0, y mod 2 = 0] = (p, g)

where

p = [P(ρ(x > 0)), P(ρ(y mod 2 = 0))]

= [x, y]

and

g = (G(ρ(x > 0))) × (G(ρ(y mod 2 = 0)))

= (x > 0) × (y mod 2 = 0)

ρ(f h : : t) = (h : : t, (f h) × true)

= (h : : t, f h)

- 5 -

8. Conclusion

In functions where independent constraints are

placed on individual variables of a pattern, implicit

guard expressions deliver the desired improvement:

they eliminate redundant code and increase locality,

because implicit guard expressions are part of the pat-

tern. In more complex cases, explicit guard expres-

sions must be used.

All implicit guard expressions can be rewritten

to explicit ones by the algorithm presented in this

paper, making it easy to extend languages that already

provide explicit guards.

Work to be done includes:

• Special care has to be taken when combining cur-

rying with implicit guard patterns, because a com-

piler has to identify common patterns in functions

like

fun p x 0 = 1
| x y = p x (y − 1)

If the pattern x would contain implicit guards in

this case, the compiler would still have to be able

to identify the common pattern x in order to gener-

ate a properly curried function. The mLite lan-

guage currently solves this problem by not allow-

ing the combination of currying and alternative

patterns, but this is to be improved.

• Multiple identifiers in infix expressions should be

dealt with in some meaningful way. One option

would be to create a tuple of two identifiers, so that

the implicit guard (a < b) would translate to

(a, b) where (a < b). However, this approach looks

rather uninituitive. Other alternatives hav e to be

examined.

• The conversion algorithm is to be adapted to syn-

tactical constructs not covered here, like more

complex (multi-argument) constructors, etc.

• As the guard conversion algorithm creates guard

expressions in conjunctive normal form,10 the

resulting guard expressions may be suitable for

10 Logic operators may appear in clauses in the implementation de-

scribed here, so some additional conversion may be necessary.

automatic ordering by specificity, allowing to for-

mulate programs in a truly declarative form, where

the order of clauses in a pattern matching function

does not matter. This is to be investigated.

- 6 -

